All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.nd4j.linalg.cpu.nativecpu.NDArray Maven / Gradle / Ivy

There is a newer version: 1.0.0-M2.1
Show newest version
/*******************************************************************************
 * Copyright (c) 2015-2018 Skymind, Inc.
 *
 * This program and the accompanying materials are made available under the
 * terms of the Apache License, Version 2.0 which is available at
 * https://www.apache.org/licenses/LICENSE-2.0.
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 *
 * SPDX-License-Identifier: Apache-2.0
 ******************************************************************************/

package org.nd4j.linalg.cpu.nativecpu;


import lombok.val;
import org.bytedeco.javacpp.Pointer;
import org.nd4j.linalg.api.buffer.DataBuffer;
import org.nd4j.linalg.api.buffer.DoubleBuffer;
import org.nd4j.linalg.api.buffer.FloatBuffer;
import org.nd4j.linalg.api.buffer.LongBuffer;
import org.nd4j.linalg.api.ndarray.BaseNDArray;
import org.nd4j.linalg.api.ndarray.BaseNDArrayProxy;
import org.nd4j.linalg.api.ndarray.INDArray;
import org.nd4j.linalg.api.ndarray.JvmShapeInfo;
import org.nd4j.linalg.api.ops.performance.PerformanceTracker;
import org.nd4j.linalg.factory.Nd4j;
import org.nd4j.linalg.memory.MemcpyDirection;
import org.nd4j.linalg.workspace.WorkspaceUtils;

import java.util.List;


/**
 * NDArray: (think numpy)
 * 

* A few things of note. *

* An NDArray can have any number of dimensions. *

* An NDArray is accessed via strides. *

* Strides are how to index over * a contiguous block of data. *

* This block of data has 2 orders(as of right now): * fortran and c * * @author Adam Gibson */ public class NDArray extends BaseNDArray { static { //invoke the override Nd4j.getBlasWrapper(); } public NDArray() { super(); } public NDArray(DataBuffer buffer, LongBuffer shapeInfo, long[] javaShapeInfo) { this.jvmShapeInfo = new JvmShapeInfo(javaShapeInfo); this.shapeInformation = shapeInfo; this.data = buffer; } public NDArray(DataBuffer buffer) { super(buffer); } public NDArray(DataBuffer buffer, int[] shape, int[] stride, long offset, char ordering) { super(buffer, shape, stride, offset, ordering); } public NDArray(DataBuffer buffer, long[] shape, long[] stride, long offset, char ordering) { super(buffer, shape, stride, offset, ordering); } public NDArray(double[][] data) { super(data); } public NDArray(double[][] data, char ordering) { super(data, ordering); } /** * Create this ndarray with the given data and shape and 0 offset * * @param data the data to use * @param shape the shape of the ndarray * @param ordering */ public NDArray(float[] data, int[] shape, char ordering) { super(data, shape, ordering); } /** * @param data the data to use * @param shape the shape of the ndarray * @param offset the desired offset * @param ordering the ordering of the ndarray */ public NDArray(float[] data, int[] shape, long offset, char ordering) { super(data, shape, offset, ordering); } public NDArray(float[] data, long[] shape, long offset, char ordering) { super(data, shape, offset, ordering); } public NDArray(float[] data, long[] shape, long[] stride, long offset, char ordering) { super(data, shape, stride, offset, ordering); } public NDArray(double[] data, long[] shape, long[] stride, long offset, char ordering) { super(data, shape, stride, offset, ordering); } public NDArray(double[] data, long[] shape, long offset, char ordering) { super(data, shape, offset, ordering); } /** * Construct an ndarray of the specified shape * with an empty data array * * @param shape the shape of the ndarray * @param stride the stride of the ndarray * @param offset the desired offset * @param ordering the ordering of the ndarray */ public NDArray(int[] shape, int[] stride, long offset, char ordering) { super(shape, stride, offset, ordering); } public NDArray(long[] shape, long[] stride, long offset, char ordering) { super(shape, stride, offset, ordering); } /** * Construct an ndarray of the specified shape, with optional initialization * * @param shape the shape of the ndarray * @param stride the stride of the ndarray * @param offset the desired offset * @param ordering the ordering of the ndarray * @param initialize Whether to initialize the INDArray. If true: initialize. If false: don't. */ public NDArray(int[] shape, int[] stride, long offset, char ordering, boolean initialize) { super(shape, stride, offset, ordering, initialize); } public NDArray(long[] shape, long[] stride, long offset, char ordering, boolean initialize) { super(shape, stride, offset, ordering, initialize); } /** * Create the ndarray with * the specified shape and stride and an offset of 0 * * @param shape the shape of the ndarray * @param stride the stride of the ndarray * @param ordering the ordering of the ndarray */ public NDArray(int[] shape, int[] stride, char ordering) { super(shape, stride, ordering); } public NDArray(int[] shape, long offset, char ordering) { super(shape, offset, ordering); } public NDArray(int[] shape) { super(shape); } /** * Creates a new n times m DoubleMatrix. * * @param newRows the number of rows (n) of the new matrix. * @param newColumns the number of columns (m) of the new matrix. * @param ordering */ public NDArray(int newRows, int newColumns, char ordering) { super(newRows, newColumns, ordering); } public NDArray(long newRows, long newColumns, char ordering) { super(newRows, newColumns, ordering); } /** * Create an ndarray from the specified slices. * This will go through and merge all of the * data from each slice in to one ndarray * which will then take the specified shape * * @param slices the slices to merge * @param shape the shape of the ndarray * @param ordering */ public NDArray(List slices, int[] shape, char ordering) { super(slices, shape, ordering); } public NDArray(List slices, long[] shape, char ordering) { super(slices, shape, ordering); } /** * Create an ndarray from the specified slices. * This will go through and merge all of the * data from each slice in to one ndarray * which will then take the specified shape * * @param slices the slices to merge * @param shape the shape of the ndarray * @param stride * @param ordering */ public NDArray(List slices, int[] shape, int[] stride, char ordering) { super(slices, shape, stride, ordering); } public NDArray(float[] data, int[] shape, int[] stride, char ordering) { super(data, shape, stride, ordering); } public NDArray(float[] data, int[] shape, int[] stride, long offset, char ordering) { super(data, shape, stride, offset, ordering); } /** * Create this ndarray with the given data and shape and 0 offset * * @param data the data to use * @param shape the shape of the ndarray */ public NDArray(float[] data, int[] shape) { super(data, shape); } public NDArray(float[] data, int[] shape, long offset) { super(data, shape, offset); } /** * Construct an ndarray of the specified shape * with an empty data array * * @param shape the shape of the ndarray * @param stride the stride of the ndarray * @param offset the desired offset */ public NDArray(int[] shape, int[] stride, long offset) { super(shape, stride, offset); } public NDArray(long[] shape, long[] stride, long offset) { super(shape, stride, offset); } /** * Create the ndarray with * the specified shape and stride and an offset of 0 * * @param shape the shape of the ndarray * @param stride the stride of the ndarray */ public NDArray(int[] shape, int[] stride) { super(shape, stride); } public NDArray(int[] shape, long offset) { super(shape, offset); } public NDArray(int[] shape, char ordering) { super(shape, ordering); } /** * Creates a new n times m DoubleMatrix. * * @param newRows the number of rows (n) of the new matrix. * @param newColumns the number of columns (m) of the new matrix. */ public NDArray(int newRows, int newColumns) { super(newRows, newColumns); } public NDArray(long newRows, long newColumns) { super(newRows, newColumns); } /** * Create an ndarray from the specified slices. * This will go through and merge all of the * data from each slice in to one ndarray * which will then take the specified shape * * @param slices the slices to merge * @param shape the shape of the ndarray */ public NDArray(List slices, int[] shape) { super(slices, shape); } public NDArray(List slices, long[] shape) { super(slices, shape); } /** * Create an ndarray from the specified slices. * This will go through and merge all of the * data from each slice in to one ndarray * which will then take the specified shape * * @param slices the slices to merge * @param shape the shape of the ndarray * @param stride */ public NDArray(List slices, int[] shape, int[] stride) { super(slices, shape, stride); } public NDArray(List slices, long[] shape, long[] stride) { super(slices, shape, stride); } public NDArray(float[] data, int[] shape, int[] stride) { super(data, shape, stride); } public NDArray(float[] data, int[] shape, int[] stride, long offset) { super(data, shape, stride, offset); } public NDArray(float[] data) { super(data); } public NDArray(double[] data, int[] shape, int[] stride, long offset) { super(data, shape, stride, offset); } public NDArray(float[][] floats) { super(floats); } public NDArray(float[][] data, char ordering) { super(data, ordering); } public NDArray(DataBuffer data, int[] shape, int[] stride, long offset) { super(data, shape, stride, offset); } public NDArray(int[] data, int[] shape, int[] strides) { super(data, shape, strides); } public NDArray(DataBuffer data, int[] shape) { super(data, shape); } public NDArray(DataBuffer data, long[] shape) { super(data, shape); } public NDArray(DataBuffer buffer, int[] shape, long offset) { super(buffer, shape, offset); } public NDArray(DataBuffer buffer, int[] shape, char ordering) { super(buffer, shape, ordering); } public NDArray(double[] data, int[] shape, char ordering) { super(data, shape, ordering); } public NDArray(double[] data, long[] shape, char ordering) { super(data, shape, ordering); } public NDArray(double[] data, int[] shape, int[] stride, long offset, char ordering) { super(data, shape, stride, offset, ordering); } public NDArray(float[] data, char order) { super(data, order); } public NDArray(FloatBuffer floatBuffer, char order) { super(floatBuffer, order); } public NDArray(DataBuffer buffer, int[] shape, int[] strides) { super(buffer, shape, strides); } public NDArray(DoubleBuffer buffer, int[] shape, char ordering) { super(buffer, shape, 0, ordering); } public NDArray(DoubleBuffer buffer, int[] shape, long offset) { super(buffer, shape, offset); } public NDArray(int[] shape, DataBuffer buffer) { super(shape, buffer); } private Object writeReplace() throws java.io.ObjectStreamException { return new BaseNDArrayProxy(this); } /** * This method does direct array copy. Impossible to use on views or mixed orders. * * PLEASE NOTE: YOU SHOULD NEVER USE THIS METHOD, UNLESS YOU 100% CLEAR ABOUT IT * * @return */ @Override public INDArray unsafeDuplication() { WorkspaceUtils.assertValidArray(this, "Cannot duplicate array"); if (isView()) return this.dup(this.ordering()); DataBuffer rb = Nd4j.getMemoryManager().getCurrentWorkspace() == null ? Nd4j.getDataBufferFactory().createSame(this.data, false) : Nd4j.getDataBufferFactory().createSame(this.data, false, Nd4j.getMemoryManager().getCurrentWorkspace()); INDArray ret = Nd4j.createArrayFromShapeBuffer(rb, this.shapeInfoDataBuffer()); val perfD = PerformanceTracker.getInstance().helperStartTransaction(); Pointer.memcpy(ret.data().addressPointer(), this.data().addressPointer(), this.data().length() * this.data().getElementSize()); PerformanceTracker.getInstance().helperRegisterTransaction(0, perfD, this.data().length() * this.data().getElementSize(), MemcpyDirection.HOST_TO_HOST); return ret; } @Override public INDArray unsafeDuplication(boolean blocking) { return unsafeDuplication(); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy