
org.nd4j.autodiff.AbstractFactory Maven / Gradle / Ivy
package org.nd4j.autodiff;
import org.nd4j.autodiff.functions.DifferentialFunction;
import org.nd4j.autodiff.samediff.SDGraph;
import java.util.List;
/**
*
* @param
*/
public interface AbstractFactory>
extends AbstractIdentityFactory {
/**
*
* @return
*/
SDGraph graph();
List methodNames();
X invoke(String name,Object[] args);
X eq(X i_x, X i_y);
X neq(X i_x, X i_y);
X or(X i_x, X i_y);
X add(X i_x,Number value);
X sub(X i_x,Number value);
X mul(X i_x,Number value);
X div(X i_x,Number value);
X broadcast(X i_x,int...shape);
X repeat(X i_x,int axis);
X tile(X i_x,int...repeat);
X sum(X i_x,int...dimensions);
X prod(X i_x,int...dimensions);
X mean(X i_x,int...dimensions);
X std(X i_x, boolean biasCorrected, int... dimensions);
X variance(X i_x, boolean biasCorrected, int... dimensions);
X max(X i_x,int...dimensions);
X min(X i_x,int...dimensions);
X norm1(X i_x,int...dimensions);
X norm2(X i_x,int...dimensions);
X normmax(X i_x,int...dimensions);
X neg(X i_x);
X transpose(X i_x);
X reshape(X i_x, int[] shape);
X valueArrayOf(X i_x,int[] shape);
X val(double i_v);
X abs(X i_x);
X min(X i_x, X i_y);
X max(X i_x, X i_y);
X cos(X i_x);
X acos(X i_x);
X cosh(X i_x);
X acosh(X i_x);
X sin(X i_x);
X asin(X i_x);
X sinh(X i_x);
X asinh(X i_x);
X tan(X i_x);
X atan(X i_x);
X atan2(X i_x, X i_y);
X tanh(X i_x);
X atanh(X i_x);
X exp(X i_x);
X log(X i_x);
X log10(X i_x);
X flat(X i_x);
X mc(X i_x, X i_y);
X rand(X i_x);
X random(X i_x);
X gauss(X i_x);
X sgn(X i_x);
X ifx(X i_x, X i_y, X i_z);
X buf(X i_x);
X inv(X i_x);
X u(X i_x);
X uramp(X i_x);
X pow(X i_x, X i_y);
X pwr(X i_x, X i_y);
X pwrs(X i_x, X i_y);
X sqrt(X i_x);
X square(X i_x);
X hypot(X i_x, X i_y);
X floor(X value);
X ceil(X value);
X round(X value);
X relu(X value);
X leakyRelu(X value,double alpha);
/**
* Leaky relu with an alpha of
* 0.01
* @param value the value to transform
* @return
*/
X leakyRelu(X value);
X leakyReluDerivative(X value,double alpha);
/**
* Leaky relu with an alpha of
* 0.01
* @param value the value to transform
* @return
*/
X leakyReluDerivative(X value);
X hardTanh(X value);
X hardTanhDerivative(X value);
X sigmoid(X value);
X sigmoidDerivative(X value);
X softmax(X value);
X elu(X value);
X eluDerivative(X value);
X step(X value);
X sign(X value);
X softsign(X value);
X softsignDeriviative(X value);
X softplus(X value);
X rollAxis(X value, int axis);
X lossSquaredHinge(DifferentialFunction iX, DifferentialFunction i_y, int[] dimensions);
X lossPoisson(DifferentialFunction iX, DifferentialFunction i_y, int[] dimensions);
X lossNegativeLogLikelihood(DifferentialFunction iX, DifferentialFunction i_y, int[] dimensions);
X lossMSLE(DifferentialFunction iX, DifferentialFunction i_y, int[] dimensions);
X lossMCXENT(DifferentialFunction iX, DifferentialFunction i_y, int[] dimensions);
X lossMSE(DifferentialFunction iX, DifferentialFunction i_y, int[] dimensions);
X lossMAPE(DifferentialFunction iX, DifferentialFunction i_y, int[] dimensions);
X lossMAE(DifferentialFunction iX, DifferentialFunction i_y, int[] dimensions);
X lossL2(DifferentialFunction iX, DifferentialFunction i_y, int[] dimensions);
X lossL1(DifferentialFunction iX, DifferentialFunction i_y, int[] dimensions);
X lossKLD(DifferentialFunction iX, DifferentialFunction i_y, int[] dimensions);
X lossHinge(DifferentialFunction iX, DifferentialFunction i_y, int[] dimensions);
X lossCosineSimilarity(DifferentialFunction iX, DifferentialFunction i_y, int[] dimensions);
X lossBinaryXENT(DifferentialFunction iX, DifferentialFunction i_y, int[] dimensions);
X manhattanDistance(DifferentialFunction iX, DifferentialFunction i_y, int[] dimensions);
X euclideanDistance(DifferentialFunction iX, DifferentialFunction i_y, int[] dimensions);
X cosineSimilarity(DifferentialFunction iX, DifferentialFunction i_y, int[] dimensions);
X expandDims(X input,int dim);
X mmul(DifferentialFunction arrayField, DifferentialFunction y);
X tensorMmul(DifferentialFunction arrayField, DifferentialFunction y, int[][] dimensions);
/*
*/
X permute(X value, int[] dimensions);
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy