
org.nd4j.autodiff.Field Maven / Gradle / Ivy
The newest version!
package org.nd4j.autodiff;
import org.nd4j.autodiff.functions.DifferentialFunction;
/**
*
* @param
*/
public interface Field extends CommutativeRing {
X inverse();
X rsubi(X i_v);
X rdivi(X i_v);
X subi(X i_v);
X divi(X i_v);
X inversei();
X subi(double i_v);
X rsubi(double v);
X rdivi(double v);
X divi(double v);
X rdiv(X i_v);
X div(X i_v);
double getReal();
X[] args();
X rsub(double v);
X rdiv(double v);
X pow(X a);
X floor();
X ceil();
X round();
X abs();
X sqrt();
X minus(double v);
X prod(double v);
X div(double v);
X pow(double v);
X cos();
X acos();
X cosh();
X acosh();
X sin();
X asin();
X sinh();
X asinh();
X tan();
X atan();
X tanh();
X atanh();
X exp();
X log();
X log10();
X sgn();
X pwr(X y);
X pwrs(X y);
X square();
X relu();
X hardTanh();
X hardTanhDerivative();
X leakyRelu();
X elu();
X eluDerivative();
X leakyRelu(double cutoff);
X leakyReluDerivative();
X leakyReluDerivative(double cutoff);
X sigmoid();
X sigmoidDerivative();
X step();
X softsign();
X softsignDerivative();
X softmax();
X softplus();
X reshape(int[] shape);
X transpose();
X permute(int[] dimensions);
X expandDims(int dim);
X sum(int[] dimensions);
X prod(int[] dimensions);
X mean(int[] dimensions);
X std(int[] dimensions, boolean biasCorrected);
X variance(int[] dimensions, boolean biasCorrected);
X std(int[] dimensions);
X variance(int[] dimensions);
X max(int[] dimensions);
X min(int[] dimensions);
X norm1(int[] dimensions);
X norm2(int[] dimensions);
X normmax(int[] dimensions);
X valueArrayOf(int[] shape);
X tile(int[] repeat);
X repeat(int axis);
X set(X value1);
X broadcast(int[] shape);
X eq(X i_y);
X neq(X i_y);
X or(X i_y);
X rollAxis(int axis);
X cosineSimilarity(X i_y, int... dimensions);
X euclideanDistance(X i_y, int... dimensions);
X manhattanDistance(X i_y, int... dimensions);
X lossBinaryXENT(X i_y, int... dimensions);
X lossCosineSimilarity(X i_y, int... dimensions);
X lossHinge(X i_y, int... dimensions);
X lossKLD(X i_y, int... dimensions);
X lossL1(X i_y, int... dimensions);
X lossL2(X i_y, int... dimensions);
X lossMAE(X i_y, int... dimensions);
X lossMAPE(X i_y, int... dimensions);
X lossMSE(X i_y, int... dimensions);
X lossMCXENT(X i_y, int... dimensions);
X lossMSLE(X i_y, int... dimensions);
X lossNegativeLogLikelihood(X i_y, int... dimensions);
X lossPoisson(X i_y, int... dimensions);
X lossSquaredHinge(X i_y, int... dimensions);
DifferentialFunction arg();
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy