
org.neo4j.gds.algorithms.machinelearning.TopKMapComputer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of algo Show documentation
Show all versions of algo Show documentation
Neo4j Graph Data Science :: Algorithms
/*
* Copyright (c) "Neo4j"
* Neo4j Sweden AB [http://neo4j.com]
*
* This file is part of Neo4j.
*
* Neo4j is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package org.neo4j.gds.algorithms.machinelearning;
import com.carrotsearch.hppc.BitSet;
import com.carrotsearch.hppc.DoubleArrayList;
import com.carrotsearch.hppc.predicates.LongLongPredicate;
import org.neo4j.gds.Algorithm;
import org.neo4j.gds.api.Graph;
import org.neo4j.gds.api.properties.nodes.NodePropertyValues;
import org.neo4j.gds.core.concurrency.Concurrency;
import org.neo4j.gds.core.concurrency.ParallelUtil;
import org.neo4j.gds.core.utils.SetBitsIterable;
import org.neo4j.gds.core.utils.progress.tasks.ProgressTracker;
import org.neo4j.gds.similarity.nodesim.TopKMap;
import org.neo4j.gds.termination.TerminationFlag;
import org.neo4j.gds.utils.AutoCloseableThreadLocal;
import org.neo4j.gds.utils.CloseableThreadLocal;
import java.util.List;
import java.util.stream.LongStream;
public class TopKMapComputer extends Algorithm {
private final Graph graph;
private final ProgressTracker progressTracker;
private final BitSet sourceNodes;
private final BitSet targetNodes;
private final String nodeEmbeddingProperty;
private final DoubleArrayList relationshipTypeEmbedding;
private final Concurrency concurrency;
private final int topK;
private final ScoreFunction scoreFunction;
private final boolean higherIsBetter;
public TopKMapComputer(
Graph graph,
BitSet sourceNodes,
BitSet targetNodes,
String nodeEmbeddingProperty,
List relationshipTypeEmbedding,
ScoreFunction scoreFunction,
int topK,
Concurrency concurrency,
ProgressTracker progressTracker,
TerminationFlag terminationFlag
) {
super(progressTracker);
this.graph = graph;
this.progressTracker = progressTracker;
this.sourceNodes = sourceNodes;
this.targetNodes = targetNodes;
this.nodeEmbeddingProperty = nodeEmbeddingProperty;
this.relationshipTypeEmbedding = DoubleArrayList.from(relationshipTypeEmbedding.stream()
.mapToDouble(Double::doubleValue)
.toArray());
this.concurrency = concurrency;
this.topK = topK;
this.scoreFunction = scoreFunction;
this.higherIsBetter = scoreFunction == ScoreFunction.DISTMULT;
this.terminationFlag = terminationFlag;
}
public KGEPredictResult compute() {
progressTracker.beginSubTask(estimateWorkload());
TopKMap topKMap = new TopKMap(sourceNodes.capacity(), sourceNodes, Math.abs(topK), higherIsBetter);
NodePropertyValues embeddings = graph.nodeProperties(nodeEmbeddingProperty);
try (
var threadLocalScorer = AutoCloseableThreadLocal.withInitial(() -> LinkScorerFactory.create(
scoreFunction,
embeddings,
relationshipTypeEmbedding
))
) {
//TODO maybe exploit symmetry of similarity function if available when there're many source target overlap
try (var concurrentGraph = CloseableThreadLocal.withInitial(graph::concurrentCopy)) {
ParallelUtil.parallelStreamConsume(
new SetBitsIterable(sourceNodes).stream(),
concurrency,
terminationFlag,
stream -> {
stream.forEach(node1 -> {
terminationFlag.assertRunning();
LongLongPredicate isCandidateLinkPredicate = isCandidateLink(concurrentGraph.get());
LinkScorer linkScorer = threadLocalScorer.get();
linkScorer.init(node1);
targetNodesStream()
.filter(node2 -> isCandidateLinkPredicate.apply(node1, node2))
.forEach(node2 -> {
double similarity = linkScorer.computeScore(node2);
if (!Double.isNaN(similarity)) {
topKMap.put(node1, node2, similarity);
}
});
});
}
);
}
progressTracker.logProgress();
}
progressTracker.endSubTask();
return KGEPredictResult.of(topKMap);
}
private LongStream targetNodesStream() {
return new SetBitsIterable(targetNodes, 0).stream();
}
private long estimateWorkload() {
return sourceNodes.cardinality() * targetNodes.cardinality();
}
private LongLongPredicate isCandidateLink(Graph graph) {
//exists O(n)
return (s, t) -> s != t && !graph.exists(s, t);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy