org.neo4j.gds.embeddings.graphsage.GraphSageEmbeddingsGenerator Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of algo Show documentation
Show all versions of algo Show documentation
Neo4j Graph Data Science :: Algorithms
The newest version!
/*
* Copyright (c) "Neo4j"
* Neo4j Sweden AB [http://neo4j.com]
*
* This file is part of Neo4j.
*
* Neo4j is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package org.neo4j.gds.embeddings.graphsage;
import org.neo4j.gds.api.Graph;
import org.neo4j.gds.collections.ha.HugeObjectArray;
import org.neo4j.gds.core.concurrency.Concurrency;
import org.neo4j.gds.core.concurrency.RunWithConcurrency;
import org.neo4j.gds.core.utils.partition.Partition;
import org.neo4j.gds.core.utils.partition.PartitionUtils;
import org.neo4j.gds.core.utils.progress.tasks.ProgressTracker;
import org.neo4j.gds.ml.core.ComputationContext;
import org.neo4j.gds.ml.core.Variable;
import org.neo4j.gds.ml.core.subgraph.SubGraph;
import org.neo4j.gds.ml.core.tensor.Matrix;
import org.neo4j.gds.termination.TerminationFlag;
import java.util.List;
import java.util.Optional;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.ThreadLocalRandom;
public class GraphSageEmbeddingsGenerator {
private final Layer[] layers;
private final int batchSize;
private final Concurrency concurrency;
private final FeatureFunction featureFunction;
private final long randomSeed;
private final ExecutorService executor;
private final ProgressTracker progressTracker;
private final TerminationFlag terminationFlag;
public GraphSageEmbeddingsGenerator(
Layer[] layers,
int batchSize,
Concurrency concurrency,
FeatureFunction featureFunction,
Optional randomSeed,
ExecutorService executor,
ProgressTracker progressTracker,
TerminationFlag terminationFlag
) {
this.layers = layers;
this.batchSize = batchSize;
this.concurrency = concurrency;
this.featureFunction = featureFunction;
this.randomSeed = randomSeed.orElseGet(() -> ThreadLocalRandom.current().nextLong());
this.executor = executor;
this.progressTracker = progressTracker;
this.terminationFlag = terminationFlag;
}
public HugeObjectArray makeEmbeddings(
Graph graph,
HugeObjectArray features
) {
HugeObjectArray result = HugeObjectArray.newArray(
double[].class,
graph.nodeCount()
);
progressTracker.beginSubTask();
var tasks = PartitionUtils.rangePartitionWithBatchSize(
graph.nodeCount(),
batchSize,
partition -> createEmbeddings(graph.concurrentCopy(), partition, features, result, terminationFlag)
);
RunWithConcurrency.builder()
.concurrency(concurrency)
.tasks(tasks)
.executor(executor)
.run();
progressTracker.endSubTask();
return result;
}
private Runnable createEmbeddings(
Graph graph,
Partition partition,
HugeObjectArray features,
HugeObjectArray result,
TerminationFlag terminationFlag
) {
return () -> {
terminationFlag.assertRunning();
List subGraphs = GraphSageHelper.subGraphsPerLayer(
graph,
partition.stream().toArray(),
layers,
randomSeed
);
Variable batchedFeaturesExtractor = featureFunction.apply(
graph,
subGraphs.get(subGraphs.size() - 1).originalNodeIds(),
features
);
Variable embeddingVariable = GraphSageHelper.embeddingsComputationGraph(
subGraphs,
layers,
batchedFeaturesExtractor
);
Matrix embeddings = new ComputationContext().forward(embeddingVariable);
var partitionStartNodeId = partition.startNode();
var partitionNodeCount = partition.nodeCount();
for (int partitionIdx = 0; partitionIdx < partitionNodeCount; partitionIdx++) {
long nodeId = partitionStartNodeId + partitionIdx;
result.set(nodeId, embeddings.getRow(partitionIdx));
}
progressTracker.logProgress(partitionNodeCount);
};
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy