org.neo4j.gds.embeddings.graphsage.LayerFactory Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of algo Show documentation
Show all versions of algo Show documentation
Neo4j Graph Data Science :: Algorithms
The newest version!
/*
* Copyright (c) "Neo4j"
* Neo4j Sweden AB [http://neo4j.com]
*
* This file is part of Neo4j.
*
* Neo4j is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package org.neo4j.gds.embeddings.graphsage;
import org.neo4j.gds.ml.core.functions.Weights;
import org.neo4j.gds.ml.core.tensor.Matrix;
import org.neo4j.gds.ml.core.tensor.Vector;
import java.util.Random;
import static org.neo4j.gds.utils.StringFormatting.formatWithLocale;
public final class LayerFactory {
private LayerFactory() {}
public static Layer createLayer(
LayerConfig layerConfig
) {
int rows = layerConfig.rows();
int cols = layerConfig.cols();
var activationFunctionType = layerConfig.activationFunction();
var activationFunctionWrapper = ActivationFunctionFactory
.activationFunctionWrapper(activationFunctionType);
var randomSeed = layerConfig.randomSeed();
Weights weights = generateWeights(
rows,
cols,
activationFunctionWrapper.weightInitBound(rows, cols),
randomSeed
);
switch (layerConfig.aggregatorType()) {
case MEAN:
return new MeanAggregatingLayer(
weights,
layerConfig.sampleSize(),
activationFunctionWrapper
);
case POOL:
Weights poolWeights = weights;
Weights selfWeights = generateWeights(
rows,
cols,
activationFunctionWrapper.weightInitBound(rows, cols),
randomSeed + 1
);
Weights neighborsWeights = generateWeights(
rows,
rows,
activationFunctionWrapper.weightInitBound(rows, rows),
randomSeed + 2
);
Weights bias = new Weights<>(Vector.create(0D, rows));
return new MaxPoolAggregatingLayer(
layerConfig.sampleSize(),
poolWeights,
selfWeights,
neighborsWeights,
bias,
activationFunctionWrapper
);
default:
throw new IllegalArgumentException(formatWithLocale(
"Aggregator: %s is unknown",
layerConfig.aggregatorType()
));
}
}
public static Weights generateWeights(int rows, int cols, double weightBound, long randomSeed) {
double[] data = new Random(randomSeed)
.doubles(Math.multiplyExact(rows, cols), -weightBound, weightBound)
.toArray();
return new Weights<>(new Matrix(
data,
rows,
cols
));
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy