org.neo4j.gds.embeddings.hashgnn.RawFeaturesTask Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of algo Show documentation
Show all versions of algo Show documentation
Neo4j Graph Data Science :: Algorithms
The newest version!
/*
* Copyright (c) "Neo4j"
* Neo4j Sweden AB [http://neo4j.com]
*
* This file is part of Neo4j.
*
* Neo4j is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package org.neo4j.gds.embeddings.hashgnn;
import org.apache.commons.lang3.mutable.MutableLong;
import org.neo4j.gds.api.Graph;
import org.neo4j.gds.collections.ha.HugeObjectArray;
import org.neo4j.gds.core.concurrency.Concurrency;
import org.neo4j.gds.core.concurrency.RunWithConcurrency;
import org.neo4j.gds.core.utils.paged.HugeAtomicBitSet;
import org.neo4j.gds.core.utils.partition.Partition;
import org.neo4j.gds.core.utils.progress.tasks.ProgressTracker;
import org.neo4j.gds.ml.core.features.FeatureConsumer;
import org.neo4j.gds.ml.core.features.FeatureExtraction;
import org.neo4j.gds.ml.core.features.FeatureExtractor;
import org.neo4j.gds.termination.TerminationFlag;
import java.util.List;
import java.util.stream.Collectors;
import static org.neo4j.gds.utils.StringFormatting.formatWithLocale;
class RawFeaturesTask implements Runnable {
private final Partition partition;
private final Graph graph;
private final List featureExtractors;
private final int inputDimension;
private final HugeObjectArray features;
private final ProgressTracker progressTracker;
private long totalFeatureCount = 0;
RawFeaturesTask(
Partition partition,
Graph graph,
List featureExtractors,
int inputDimension,
HugeObjectArray features,
ProgressTracker progressTracker
) {
this.partition = partition;
this.graph = graph;
this.featureExtractors = featureExtractors;
this.inputDimension = inputDimension;
this.features = features;
this.progressTracker = progressTracker;
}
static HugeObjectArray compute(
Concurrency concurrency,
List featureProperties,
ProgressTracker progressTracker,
Graph graph,
List partitions,
TerminationFlag terminationFlag,
MutableLong totalFeatureCountOutput
) {
progressTracker.beginSubTask("Extract raw node property features");
var featureExtractors = FeatureExtraction.propertyExtractors(graph, featureProperties);
int inputDimension = FeatureExtraction.featureCount(featureExtractors);
var features = HugeObjectArray.newArray(HugeAtomicBitSet.class, graph.nodeCount());
var tasks = partitions.stream()
.map(p -> new RawFeaturesTask(
p,
graph,
featureExtractors,
inputDimension,
features,
progressTracker
))
.collect(Collectors.toList());
RunWithConcurrency.builder()
.concurrency(concurrency)
.tasks(tasks)
.terminationFlag(terminationFlag)
.run();
totalFeatureCountOutput.add(tasks.stream().mapToLong(RawFeaturesTask::totalFeatureCount).sum());
progressTracker.endSubTask("Extract raw node property features");
return features;
}
@Override
public void run() {
partition.consume(nodeId -> {
var nodeFeatures = HugeAtomicBitSet.create(inputDimension);
FeatureExtraction.extract(nodeId, -1, featureExtractors, new FeatureConsumer() {
@Override
public void acceptScalar(long nodeOffset, int offset, double value) {
if (value == 1.0) {
nodeFeatures.set(offset);
} else if (value != 0.0) {
throw new IllegalArgumentException(formatWithLocale("Feature properties may only contain values 0 and 1 unless `binarizeFeatures` is used. Node %d and possibly other nodes have a feature property containing value %f", graph.toOriginalNodeId(nodeId), value));
}
}
@Override
public void acceptArray(long nodeOffset, int offset, double[] values) {
for (int inputFeatureOffset = 0; inputFeatureOffset < values.length; inputFeatureOffset++) {
var value = values[inputFeatureOffset];
if (value == 1.0) {
nodeFeatures.set(offset + inputFeatureOffset);
} else if (value != 0.0) {
throw new IllegalArgumentException(formatWithLocale("Feature properties may only contain values 0 and 1 unless `binarizeFeatures` is used. Node %d and possibly other nodes have a feature property containing value %.17f", graph.toOriginalNodeId(nodeId), value));
}
}
}
});
totalFeatureCount += nodeFeatures.cardinality();
features.set(nodeId, nodeFeatures);
});
progressTracker.logProgress(partition.nodeCount());
}
public long totalFeatureCount() {
return totalFeatureCount;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy