org.neo4j.gds.embeddings.node2vec.Node2VecMemoryEstimateDefinition Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of algo Show documentation
Show all versions of algo Show documentation
Neo4j Graph Data Science :: Algorithms
The newest version!
/*
* Copyright (c) "Neo4j"
* Neo4j Sweden AB [http://neo4j.com]
*
* This file is part of Neo4j.
*
* Neo4j is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package org.neo4j.gds.embeddings.node2vec;
import org.neo4j.gds.mem.MemoryEstimateDefinition;
import org.neo4j.gds.collections.ha.HugeDoubleArray;
import org.neo4j.gds.collections.ha.HugeLongArray;
import org.neo4j.gds.collections.ha.HugeObjectArray;
import org.neo4j.gds.mem.MemoryEstimation;
import org.neo4j.gds.mem.MemoryEstimations;
import org.neo4j.gds.mem.Estimate;
public final class Node2VecMemoryEstimateDefinition implements MemoryEstimateDefinition {
private final Node2VecParameters parameters;
public Node2VecMemoryEstimateDefinition(Node2VecParameters parameters) {
this.parameters = parameters;
}
@Override
public MemoryEstimation memoryEstimation() {
int walksPerNode = parameters.samplingWalkParameters().walksPerNode();
int walkLength = parameters.samplingWalkParameters().walkLength();
int embeddingDimension = parameters.trainParameters().embeddingDimension();
return MemoryEstimations.builder(Node2Vec.class)
.perNode("random walks", (nodeCount) -> {
var numberOfRandomWalks = nodeCount * walksPerNode;
var randomWalkMemoryUsage = Estimate.sizeOfLongArray(walkLength);
return HugeObjectArray.memoryEstimation(numberOfRandomWalks, randomWalkMemoryUsage);
})
.add("probability cache", randomWalksMemoryEstimation())
.add("model", modelMemoryEstimation(embeddingDimension))
.build();
}
private MemoryEstimation randomWalksMemoryEstimation() {
return MemoryEstimations.builder(RandomWalkProbabilities.class)
.perNode("node frequencies", HugeLongArray::memoryEstimation)
.perNode("positive sampling probabilities", HugeDoubleArray::memoryEstimation)
.perNode("negative sampling distribution", HugeLongArray::memoryEstimation)
.build();
}
private MemoryEstimation modelMemoryEstimation(int embeddingDimension) {
var vectorMemoryEstimation = Estimate.sizeOfFloatArray(embeddingDimension);
return MemoryEstimations.builder(Node2VecModel.class)
.perNode(
"center embeddings",
(nodeCount) -> HugeObjectArray.memoryEstimation(nodeCount, vectorMemoryEstimation)
)
.perNode(
"context embeddings",
(nodeCount) -> HugeObjectArray.memoryEstimation(nodeCount, vectorMemoryEstimation)
)
.build();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy