
org.neo4j.gds.influenceMaximization.ICInitTask Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of algo Show documentation
Show all versions of algo Show documentation
Neo4j Graph Data Science :: Algorithms
/*
* Copyright (c) "Neo4j"
* Neo4j Sweden AB [http://neo4j.com]
*
* This file is part of Neo4j.
*
* Neo4j is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package org.neo4j.gds.influenceMaximization;
import com.carrotsearch.hppc.BitSet;
import org.neo4j.gds.api.Graph;
import org.neo4j.gds.collections.ha.HugeDoubleArray;
import org.neo4j.gds.core.utils.paged.HugeLongArrayStack;
import org.neo4j.gds.core.utils.partition.Partition;
import org.neo4j.gds.core.utils.progress.tasks.ProgressTracker;
import java.util.SplittableRandom;
final class ICInitTask implements Runnable {
private final Graph localGraph;
private final double propagationProbability;
private final int monteCarloSimulations;
private final HugeDoubleArray singleSpreadArray;
private final Partition partition;
private final BitSet active;
private final HugeLongArrayStack newActive;
private final long initialRandomSeed;
private final ProgressTracker progressTracker;
ICInitTask(
Partition partition,
Graph graph,
double propagationProbability,
int monteCarloSimulations,
HugeDoubleArray singleSpreadArray,
long initialRandomSeed,
ProgressTracker progressTracker
) {
this.partition = partition;
this.localGraph = graph.concurrentCopy();
this.propagationProbability = propagationProbability;
this.monteCarloSimulations = monteCarloSimulations;
this.singleSpreadArray = singleSpreadArray;
this.progressTracker = progressTracker;
active = new BitSet(graph.nodeCount());
newActive = HugeLongArrayStack.newStack(graph.nodeCount());
this.initialRandomSeed = initialRandomSeed;
}
private void initDataStructures(long candidateNodeId) {
active.clear();
newActive.push(candidateNodeId);
active.set(candidateNodeId);
}
public void run() {
//Loop over the Monte-Carlo simulations
long startNode = partition.startNode();
long endNode = startNode + partition.nodeCount();
for (long nodeId = startNode; nodeId < endNode; ++nodeId) {
double nodeSpread = 0d;
for (int simulation = 0; simulation < monteCarloSimulations; ++simulation) {
initDataStructures(nodeId);
//For each newly active node, find its neighbors that become activated
while (!newActive.isEmpty()) {
//Determine neighbors that become infected
long nextExaminedNode = newActive.pop();
var rand = new SplittableRandom(initialRandomSeed + simulation);
localGraph.forEachRelationship(nextExaminedNode, (source, target) ->
{
if (rand.nextDouble() < propagationProbability) {
if (!active.get(target)) {
//Add newly activated nodes to the set of activated nodes
newActive.push(target);
active.set(target);
}
}
return true;
});
}
nodeSpread += active.cardinality();
}
singleSpreadArray.set(nodeId, nodeSpread / monteCarloSimulations);
progressTracker.logProgress();
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy