org.neo4j.gds.influenceMaximization.ICLazyForwardTask Maven / Gradle / Ivy
/*
* Copyright (c) "Neo4j"
* Neo4j Sweden AB [http://neo4j.com]
*
* This file is part of Neo4j.
*
* Neo4j is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package org.neo4j.gds.influenceMaximization;
import com.carrotsearch.hppc.BitSet;
import org.neo4j.gds.api.Graph;
import org.neo4j.gds.core.utils.paged.HugeLongArrayStack;
import org.neo4j.gds.core.utils.partition.Partition;
import java.util.SplittableRandom;
final class ICLazyForwardTask implements Runnable {
private final long[] seedSetNodes;
private final long initialRandomSeed;
private int seedNodeCounter;
private final Partition partition;
private final long[] candidateNodeIds;
private int candidateSetSizes;
private final double[] localSpread;
private final Graph localGraph;
private final BitSet candidateActive;
private final BitSet seedActive;
private final HugeLongArrayStack newActive;
private final double propagationProbability;
ICLazyForwardTask(
Partition partition,
Graph graph,
long firstNodeInSeedSet,
int seedSetCount,
double propagationProbability,
long initialRandomSeed,
int batchSize
) {
this.localGraph = graph;
this.newActive = HugeLongArrayStack.newStack(graph.nodeCount());
this.seedActive = new BitSet(graph.nodeCount());
this.candidateActive = new BitSet(graph.nodeCount());
this.propagationProbability = propagationProbability;
this.seedSetNodes = new long[seedSetCount];
this.seedSetNodes[0] = firstNodeInSeedSet;
this.initialRandomSeed = initialRandomSeed;
this.seedNodeCounter = 1;
this.partition = partition;
this.localSpread = new double[batchSize];
this.candidateNodeIds = new long[batchSize];
}
void incrementSeedNode(long newSetNode) {
seedSetNodes[this.seedNodeCounter++] = newSetNode;
}
void setCandidateNodeId(long[] candidateNodeIds, int candidateSetSize) {
if (candidateSetSize >= 0) {
System.arraycopy(candidateNodeIds, 0, this.candidateNodeIds, 0, candidateSetSize);
}
this.candidateSetSizes = candidateSetSize;
}
double getSpread(int j) {
return localSpread[j];
}
private void initCandidate(long candidateId) {
if (!seedActive.get(candidateId)) {
candidateActive.clear();
candidateActive.set(candidateId);
newActive.push(candidateId);
}
}
private void initDataStructures() {
seedActive.clear();
for (int i = 0; i < seedNodeCounter; ++i) {
newActive.push(seedSetNodes[i]);
seedActive.set(seedSetNodes[i]);
}
}
private void seedTraverse(long seed) {
while (!newActive.isEmpty()) {
//Determine neighbors that become infected
long nodeId = newActive.pop();
SplittableRandom rand = new SplittableRandom(initialRandomSeed + seed);
localGraph.forEachRelationship(nodeId, (source, target) ->
{
if (rand.nextDouble() < propagationProbability) {
if (!seedActive.get(target)) {
//Add newly activated nodes to the set of activated nodes
newActive.push(target);
seedActive.set(target);
}
}
return true;
});
}
}
private void candidateTraverse(long seed) {
while (!newActive.isEmpty()) {
//Determine neighbors that become infected
long nodeId = newActive.pop();
SplittableRandom rand = new SplittableRandom(initialRandomSeed + seed);
localGraph.forEachRelationship(nodeId, (source, target) ->
{
if (rand.nextDouble() < propagationProbability) {
if (!seedActive.get(target) && !candidateActive.get(target)) {
//Add newly activated nodes to the set of activated nodes
newActive.push(target);
candidateActive.set(target);
}
}
return true;
});
}
}
public void run() {
//Loop over the Monte-Carlo simulations
for (int j = 0; j < candidateSetSizes; ++j) {
localSpread[j] = 0;
}
long startingSeed = partition.startNode();
long endingSeed = partition.nodeCount() + startingSeed;
for (long seed = startingSeed; seed < endingSeed; seed++) {
initDataStructures();
seedTraverse(seed);
for (int j = 0; j < candidateSetSizes; ++j) {
initCandidate(candidateNodeIds[j]);
localSpread[j] += seedActive.cardinality();
if (!newActive.isEmpty()) {
candidateTraverse(seed);
localSpread[j] += candidateActive.cardinality();
}
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy