org.neo4j.gds.kmeans.FloatClusterManager Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of algo Show documentation
Show all versions of algo Show documentation
Neo4j Graph Data Science :: Algorithms
The newest version!
/*
* Copyright (c) "Neo4j"
* Neo4j Sweden AB [http://neo4j.com]
*
* This file is part of Neo4j.
*
* Neo4j is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package org.neo4j.gds.kmeans;
import org.neo4j.gds.api.properties.nodes.NodePropertyValues;
import org.neo4j.gds.core.utils.Intersections;
import java.util.Arrays;
import java.util.List;
class FloatClusterManager extends ClusterManager {
private final float[][] centroids;
FloatClusterManager(NodePropertyValues values, int dimensions, int k) {
super(values, dimensions, k);
this.centroids = new float[k][dimensions];
}
@Override
public void normalize(int centroidId,int dimension){
centroids[centroidId][dimension] /= (float) nodesInCluster[centroidId];
}
@Override
public void initialAssignCluster(long id) {
float[] cluster = nodePropertyValues.floatArrayValue(id);
System.arraycopy(cluster, 0, centroids[currentlyAssigned++], 0, cluster.length);
}
@Override
public void updateFromTask(KmeansTask task) {
var floatKmeansTask = (FloatKmeansTask) task;
for (int centroidId = 0; centroidId < k; ++centroidId) {
var contribution = task.getNumAssignedAtCluster(centroidId);
if (contribution > 0) {
if (shouldReset[centroidId]) {
Arrays.fill(centroids[centroidId], 0.0f);
shouldReset[centroidId] = false;
}
nodesInCluster[centroidId] += contribution;
var taskContributionToCluster = floatKmeansTask.getCentroidContribution(centroidId);
for (int dimension = 0; dimension < dimensions; ++dimension) {
centroids[centroidId][dimension] += taskContributionToCluster[dimension];
}
}
}
}
@Override
double[][] getCentroids() {
double[][] doubleCentroids = new double[k][dimensions];
for (int i = 0; i < k; ++i) {
for (int j = 0; j < dimensions; ++j) {
doubleCentroids[i][j] = centroids[i][j];
}
}
return doubleCentroids;
}
@Override
public double euclidean(long nodeId, int centroidId) {
float[] left = nodePropertyValues.floatArrayValue(nodeId);
float[] right = centroids[centroidId];
return Math.sqrt(Intersections.sumSquareDelta(left, right, right.length));
}
@Override
public void assignSeededCentroids(List> seededCentroids) {
for (List centroid : seededCentroids) {
var centroidArray = new float[dimensions];
int index = 0;
for (double value : centroid) {
centroidArray[index++] = (float) value;
}
System.arraycopy(centroidArray, 0, centroids[currentlyAssigned++], 0, centroidArray.length);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy