org.neo4j.gds.similarity.nodesim.TopKMap Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of algo Show documentation
Show all versions of algo Show documentation
Neo4j Graph Data Science :: Algorithms
The newest version!
/*
* Copyright (c) "Neo4j"
* Neo4j Sweden AB [http://neo4j.com]
*
* This file is part of Neo4j.
*
* Neo4j is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package org.neo4j.gds.similarity.nodesim;
import com.carrotsearch.hppc.AbstractIterator;
import com.carrotsearch.hppc.BitSet;
import org.neo4j.gds.core.utils.SetBitsIterable;
import org.neo4j.gds.mem.MemoryEstimation;
import org.neo4j.gds.mem.MemoryEstimations;
import org.neo4j.gds.collections.ha.HugeObjectArray;
import org.neo4j.gds.core.utils.queue.BoundedLongLongPriorityQueue;
import org.neo4j.gds.core.utils.queue.BoundedLongPriorityQueue;
import org.neo4j.gds.similarity.SimilarityResult;
import java.util.Comparator;
import java.util.PrimitiveIterator;
import java.util.stream.Stream;
import java.util.stream.StreamSupport;
public class TopKMap {
private final BitSet sourceNodes;
public static MemoryEstimation memoryEstimation(long nodes, int topK) {
int actualTopK = Math.toIntExact(Math.min(topK, nodes));
return MemoryEstimations.builder(TopKMap.class)
.add("topK lists",
MemoryEstimations.builder("topK lists", TopKList.class)
.add("queues", BoundedLongPriorityQueue.memoryEstimation(actualTopK))
.build()
.times(nodes)
)
.build();
}
private final HugeObjectArray topKLists;
TopKMap(
long items,
BitSet sourceNodes,
int topK,
Comparator comparator
) {
this(items, sourceNodes, topK, comparator.equals(SimilarityResult.DESCENDING));
}
public TopKMap(
long items,
BitSet sourceNodes,
int topK,
boolean higherIsBetter
) {
this.sourceNodes = sourceNodes;
int boundedTopK = (int) Math.min(topK, items);
topKLists = HugeObjectArray.newArray(TopKList.class, items);
topKLists.setAll(node1 -> sourceNodes.get(node1)
? new TopKList(higherIsBetter
? BoundedLongPriorityQueue.max(boundedTopK)
: BoundedLongPriorityQueue.min(boundedTopK)
) : null
);
}
public void put(long node1, long node2, double similarity) {
topKLists.get(node1).accept(node2, similarity);
}
public TopKList get(long node1) {
return topKLists.get(node1);
}
long similarityPairCount() {
SetBitsIterable longs = new SetBitsIterable(sourceNodes);
PrimitiveIterator.OfLong iterator = longs.iterator();
long size = 0L;
while (iterator.hasNext()) {
size += topKLists.get(iterator.nextLong()).size();
}
return size;
}
public void forEach(BoundedLongLongPriorityQueue.Consumer consumer) {
SetBitsIterable items = new SetBitsIterable(sourceNodes);
items.stream().forEach(element1 -> {
BoundedLongPriorityQueue queue = topKLists.get(element1).queue;
PrimitiveIterator.OfLong node2Iterator = queue.elements().iterator();
PrimitiveIterator.OfDouble priorityIterator = queue.priorities().iterator();
while (node2Iterator.hasNext()) {
consumer.accept(element1, node2Iterator.nextLong(), priorityIterator.nextDouble());
}
});
}
public Stream stream() {
return stream(SimilarityResult::new);
}
public Stream stream(ResultEntryCreator entryCreator) {
return new SetBitsIterable(sourceNodes).stream()
.boxed()
.flatMap(node1 -> topKLists.get(node1).stream(node1, entryCreator));
}
public interface ResultEntryCreator {
R create(long node1, long node2, double similarity);
}
public static final class TopKList {
private final BoundedLongPriorityQueue queue;
TopKList(BoundedLongPriorityQueue queue) {
this.queue = queue;
}
int size() {
return queue.size();
}
void accept(long node2, double similarity) {
queue.offer(node2, similarity);
}
void forEach(BoundedLongPriorityQueue.Consumer consumer) {
queue.forEach(consumer);
}
Stream stream(long node1, ResultEntryCreator resultCreator) {
Iterable iterable = () -> new AbstractIterator<>() {
final PrimitiveIterator.OfLong elementsIter = queue.elements().iterator();
final PrimitiveIterator.OfDouble prioritiesIter = queue.priorities().iterator();
@Override
protected R fetch() {
if (!elementsIter.hasNext() || !prioritiesIter.hasNext()) {
return done();
}
return resultCreator.create(node1, elementsIter.nextLong(), prioritiesIter.nextDouble());
}
};
return StreamSupport.stream(iterable.spliterator(), false);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy