org.neo4j.gds.ml.linkmodels.pipeline.LinkPredictionPipelineAddTrainerMethodProcs Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of proc-machine-learning Show documentation
Show all versions of proc-machine-learning Show documentation
Neo4j Graph Data Science :: Procedures :: Machine Learning
/*
* Copyright (c) "Neo4j"
* Neo4j Sweden AB [http://neo4j.com]
*
* This file is part of Neo4j.
*
* Neo4j is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package org.neo4j.gds.ml.linkmodels.pipeline;
import org.neo4j.gds.BaseProc;
import org.neo4j.gds.core.ConfigKeyValidation;
import org.neo4j.gds.ml.api.TrainingMethod;
import org.neo4j.gds.ml.models.automl.TunableTrainerConfig;
import org.neo4j.gds.ml.models.logisticregression.LogisticRegressionTrainConfig;
import org.neo4j.gds.ml.models.mlp.MLPClassifierTrainConfig;
import org.neo4j.gds.ml.models.randomforest.RandomForestClassifierTrainerConfig;
import org.neo4j.gds.ml.pipeline.PipelineCatalog;
import org.neo4j.gds.ml.pipeline.linkPipeline.LinkPredictionTrainingPipeline;
import org.neo4j.procedure.Description;
import org.neo4j.procedure.Internal;
import org.neo4j.procedure.Name;
import org.neo4j.procedure.Procedure;
import java.util.Map;
import java.util.stream.Stream;
import static org.neo4j.procedure.Mode.READ;
public class LinkPredictionPipelineAddTrainerMethodProcs extends BaseProc {
@Procedure(name = "gds.beta.pipeline.linkPrediction.addLogisticRegression", mode = READ)
@Description("Add a logistic regression configuration to the parameter space of the link prediction train pipeline.")
public Stream addLogisticRegression(
@Name("pipelineName") String pipelineName,
@Name(value = "config", defaultValue = "{}") Map logisticRegressionClassifierConfig
) {
var pipeline = PipelineCatalog.getTyped(username(), pipelineName, LinkPredictionTrainingPipeline.class);
var allowedKeys = LogisticRegressionTrainConfig.DEFAULT.configKeys();
ConfigKeyValidation.requireOnlyKeysFrom(allowedKeys, logisticRegressionClassifierConfig.keySet());
var tunableTrainerConfig = TunableTrainerConfig.of(logisticRegressionClassifierConfig, TrainingMethod.LogisticRegression);
pipeline.addTrainerConfig(
tunableTrainerConfig
);
return Stream.of(new PipelineInfoResult(pipelineName, pipeline));
}
@Procedure(name = "gds.beta.pipeline.linkPrediction.addRandomForest", mode = READ)
@Description("Add a random forest configuration to the parameter space of the link prediction train pipeline.")
public Stream addRandomForest(
@Name("pipelineName") String pipelineName,
@Name(value = "config") Map randomForestClassifierConfig
) {
var pipeline = PipelineCatalog.getTyped(username(), pipelineName, LinkPredictionTrainingPipeline.class);
var allowedKeys = RandomForestClassifierTrainerConfig.DEFAULT.configKeys();
ConfigKeyValidation.requireOnlyKeysFrom(allowedKeys, randomForestClassifierConfig.keySet());
var tunableTrainerConfig = TunableTrainerConfig.of(randomForestClassifierConfig, TrainingMethod.RandomForestClassification);
pipeline.addTrainerConfig(
tunableTrainerConfig
);
return Stream.of(new PipelineInfoResult(pipelineName, pipeline));
}
@Procedure(name = "gds.alpha.pipeline.linkPrediction.addRandomForest", mode = READ, deprecatedBy = "gds.beta.pipeline.linkPrediction.addRandomForest")
@Description("Add a random forest configuration to the parameter space of the link prediction train pipeline.")
@Internal
@Deprecated(forRemoval = true)
public Stream addRandomForestAlpha(
@Name("pipelineName") String pipelineName,
@Name(value = "config") Map randomForestClassifierConfig
) {
executionContext()
.metricsFacade()
.deprecatedProcedures().called("gds.alpha.pipeline.linkPrediction.addRandomForest");
executionContext()
.log()
.warn(
"Procedure `gds.alpha.pipeline.linkPrediction.addRandomForest` has been deprecated, please use `gds.beta.pipeline.linkPrediction.addRandomForest`.");
return addRandomForest(pipelineName, randomForestClassifierConfig);
}
@Procedure(name = "gds.alpha.pipeline.linkPrediction.addMLP", mode = READ)
@Description("Add a multilayer perceptron configuration to the parameter space of the link prediction train pipeline.")
public Stream addMLP(
@Name("pipelineName") String pipelineName,
@Name(value = "config", defaultValue = "{}") Map mlpClassifierConfig
) {
var pipeline = PipelineCatalog.getTyped(username(), pipelineName, LinkPredictionTrainingPipeline.class);
var allowedKeys = MLPClassifierTrainConfig.DEFAULT.configKeys();
ConfigKeyValidation.requireOnlyKeysFrom(allowedKeys, mlpClassifierConfig.keySet());
pipeline.addTrainerConfig(TunableTrainerConfig.of(mlpClassifierConfig, TrainingMethod.MLPClassification));
return Stream.of(new PipelineInfoResult(pipelineName, pipeline));
}
}