org.neo4j.gds.ml.kge.KGEPredictWriteSpec Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of proc-machine-learning Show documentation
Show all versions of proc-machine-learning Show documentation
Neo4j Graph Data Science :: Procedures :: Machine Learning
The newest version!
/*
* Copyright (c) "Neo4j"
* Neo4j Sweden AB [http://neo4j.com]
*
* This file is part of Neo4j.
*
* Neo4j is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
package org.neo4j.gds.ml.kge;
import org.neo4j.gds.algorithms.machinelearning.KGEPredictResult;
import org.neo4j.gds.algorithms.machinelearning.KGEPredictWriteConfig;
import org.neo4j.gds.algorithms.machinelearning.TopKMapComputer;
import org.neo4j.gds.api.Graph;
import org.neo4j.gds.core.utils.ProgressTimer;
import org.neo4j.gds.core.write.RelationshipExporterBuilder;
import org.neo4j.gds.executor.AlgorithmSpec;
import org.neo4j.gds.executor.AlgorithmSpecProgressTrackerProvider;
import org.neo4j.gds.executor.ComputationResultConsumer;
import org.neo4j.gds.executor.ExecutionContext;
import org.neo4j.gds.executor.GdsCallable;
import org.neo4j.gds.procedures.algorithms.configuration.NewConfigFunction;
import org.neo4j.gds.procedures.algorithms.machinelearning.KGEWriteResult;
import org.neo4j.gds.similarity.nodesim.TopKGraph;
import java.util.stream.Stream;
import static org.neo4j.gds.executor.ExecutionMode.WRITE_RELATIONSHIP;
@GdsCallable(
name = "gds.ml.kge.predict.write",
description = "Predicts new relationships using an existing KGE model",
executionMode = WRITE_RELATIONSHIP)
public class KGEPredictWriteSpec implements
AlgorithmSpec, KGEPredictAlgorithmFactory> {
@Override
public String name() {
return "KGEPredictWrite";
}
@Override
public KGEPredictAlgorithmFactory algorithmFactory(ExecutionContext executionContext) {
return new KGEPredictAlgorithmFactory<>();
}
@Override
public NewConfigFunction newConfigFunction() {
return (__, config) -> KGEPredictWriteConfig.of(config);
}
@Override
public ComputationResultConsumer> computationResultConsumer() {
return (computationResult, executionContext) -> {
KGEWriteResult.Builder builder = new KGEWriteResult.Builder();
if (computationResult.result().isEmpty()) {
return Stream.of(builder.build());
}
Graph graph = computationResult.graph();
var topKMap = computationResult.result().get().topKMap();
var topKGraph = new TopKGraph(graph, topKMap);
var config = computationResult.config();
try (ProgressTimer ignored = ProgressTimer.start(builder::withWriteMillis)) {
executionContext.relationshipExporterBuilder()
.withGraph(topKGraph)
.withIdMappingOperator(topKGraph::toOriginalNodeId)
.withTerminationFlag(computationResult.algorithm().getTerminationFlag())
.withProgressTracker(
AlgorithmSpecProgressTrackerProvider.createProgressTracker(
name(),
graph.nodeCount(),
RelationshipExporterBuilder.TYPED_DEFAULT_WRITE_CONCURRENCY,
executionContext
)
)
.withResultStore(config.resolveResultStore(computationResult.resultStore()))
.withJobId(config.jobId())
.build()
.write(config.writeRelationshipType(), config.writeProperty());
}
builder.withComputeMillis(computationResult.computeMillis());
builder.withPreProcessingMillis(computationResult.preProcessingMillis());
builder.withRelationshipsWritten(topKGraph.relationshipCount());
builder.withConfig(config);
return Stream.of(builder.build());
};
}
}