All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.neo4j.gds.ml.linkmodels.pipeline.LinkPredictionPipelineAddTrainerMethodProcs Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) "Neo4j"
 * Neo4j Sweden AB [http://neo4j.com]
 *
 * This file is part of Neo4j.
 *
 * Neo4j is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see .
 */
package org.neo4j.gds.ml.linkmodels.pipeline;

import org.neo4j.gds.procedures.GraphDataScienceProcedures;
import org.neo4j.gds.procedures.pipelines.PipelineInfoResult;
import org.neo4j.procedure.Context;
import org.neo4j.procedure.Description;
import org.neo4j.procedure.Internal;
import org.neo4j.procedure.Name;
import org.neo4j.procedure.Procedure;

import java.util.Map;
import java.util.stream.Stream;

import static org.neo4j.procedure.Mode.READ;

public class LinkPredictionPipelineAddTrainerMethodProcs {
    @Context
    public GraphDataScienceProcedures facade;

    @Procedure(name = "gds.beta.pipeline.linkPrediction.addLogisticRegression", mode = READ)
    @Description("Add a logistic regression configuration to the parameter space of the link prediction train pipeline.")
    public Stream addLogisticRegression(
        @Name("pipelineName") String pipelineName,
        @Name(value = "config", defaultValue = "{}") Map logisticRegressionClassifierConfig
    ) {
        return facade.pipelines().linkPrediction().addLogisticRegression(
            pipelineName,
            logisticRegressionClassifierConfig
        );
    }

    @Procedure(name = "gds.beta.pipeline.linkPrediction.addRandomForest", mode = READ)
    @Description("Add a random forest configuration to the parameter space of the link prediction train pipeline.")
    public Stream addRandomForest(
        @Name("pipelineName") String pipelineName,
        @Name(value = "config") Map randomForestClassifierConfig
    ) {
        return facade.pipelines().linkPrediction().addRandomForest(pipelineName, randomForestClassifierConfig);
    }

    @Procedure(name = "gds.alpha.pipeline.linkPrediction.addRandomForest", mode = READ, deprecatedBy = "gds.beta.pipeline.linkPrediction.addRandomForest")
    @Description("Add a random forest configuration to the parameter space of the link prediction train pipeline.")
    @Internal
    @Deprecated(forRemoval = true)
    public Stream addRandomForestAlpha(
        @Name("pipelineName") String pipelineName,
        @Name(value = "config") Map randomForestClassifierConfig
    ) {
        facade.deprecatedProcedures().called("gds.alpha.pipeline.linkPrediction.addRandomForest");
        facade
            .log()
            .warn(
                "Procedure `gds.alpha.pipeline.linkPrediction.addRandomForest` has been deprecated, please use `gds.beta.pipeline.linkPrediction.addRandomForest`.");
        return addRandomForest(pipelineName, randomForestClassifierConfig);
    }

    @Procedure(name = "gds.alpha.pipeline.linkPrediction.addMLP", mode = READ)
    @Description("Add a multilayer perceptron configuration to the parameter space of the link prediction train pipeline.")
    public Stream addMLP(
        @Name("pipelineName") String pipelineName,
        @Name(value = "config", defaultValue = "{}") Map mlpClassifierConfig
    ) {
        return facade.pipelines().linkPrediction().addMLP(pipelineName, mlpClassifierConfig);
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy