apoc.util.kernel.MultiThreadedGlobalGraphOperations Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of apoc-common Show documentation
Show all versions of apoc-common Show documentation
Data types package for Neo4j Procedures
/*
* Copyright (c) "Neo4j"
* Neo4j Sweden AB [http://neo4j.com]
*
* This file is part of Neo4j.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package apoc.util.kernel;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;
import java.util.function.Consumer;
import java.util.function.Function;
import org.neo4j.internal.kernel.api.NodeCursor;
import org.neo4j.internal.kernel.api.PartitionedScan;
import org.neo4j.internal.kernel.api.Read;
import org.neo4j.internal.kernel.api.security.LoginContext;
import org.neo4j.kernel.api.ExecutionContext;
import org.neo4j.kernel.api.KernelTransaction;
import org.neo4j.kernel.impl.coreapi.InternalTransaction;
import org.neo4j.kernel.internal.GraphDatabaseAPI;
public class MultiThreadedGlobalGraphOperations {
public static BatchJobResult forAllNodes(
GraphDatabaseAPI db, ExecutorService executorService, int batchSize, Consumer consumer) {
BatchJobResult result = new BatchJobResult();
AtomicInteger processing = new AtomicInteger();
try (InternalTransaction tx =
db.beginTransaction(KernelTransaction.Type.EXPLICIT, LoginContext.AUTH_DISABLED)) {
KernelTransaction ktx = tx.kernelTransaction();
Read dataRead = ktx.dataRead();
PartitionedScan scan = dataRead.allNodesScan(1, ktx.cursorContext());
Function cursorAllocator =
ktx2 -> ktx2.cursors().allocateNodeCursor(ktx2.cursorContext());
executorService.submit(
new BatchJob(scan, batchSize, db, consumer, result, cursorAllocator, executorService, processing));
}
try {
while (processing.get() > 0) {
Thread.sleep(10);
}
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
return result;
}
public static class BatchJobResult {
final AtomicInteger batches = new AtomicInteger();
final AtomicLong succeeded = new AtomicLong();
final AtomicLong failures = new AtomicLong();
public void incrementSuceeded() {
succeeded.incrementAndGet();
}
public void incrementFailures() {
failures.incrementAndGet();
}
public long getSucceeded() {
return succeeded.get();
}
public long getFailures() {
return failures.get();
}
}
private static class BatchJob implements Callable {
private final PartitionedScan scan;
private final int batchSize;
private final GraphDatabaseAPI db;
private final Consumer consumer;
private final BatchJobResult result;
private final Function cursorAllocator;
private final ExecutorService executorService;
private final AtomicInteger processing;
public BatchJob(
PartitionedScan scan,
int batchSize,
GraphDatabaseAPI db,
Consumer consumer,
BatchJobResult result,
Function cursorAllocator,
ExecutorService executorService,
AtomicInteger processing) {
this.scan = scan;
this.batchSize = batchSize;
this.db = db;
this.consumer = consumer;
this.result = result;
this.cursorAllocator = cursorAllocator;
this.executorService = executorService;
this.processing = processing;
processing.incrementAndGet();
}
@Override
public Void call() {
try (InternalTransaction tx =
db.beginTransaction(KernelTransaction.Type.EXPLICIT, LoginContext.AUTH_DISABLED)) {
KernelTransaction ktx = tx.kernelTransaction();
ktx.acquireStatement();
ExecutionContext executionContext = ktx.createExecutionContext();
try (NodeCursor cursor = cursorAllocator.apply(ktx)) {
while (scan.reservePartition(cursor, executionContext)) {
// Branch out so that all available threads will get saturated
executorService.submit(new BatchJob(
scan, batchSize, db, consumer, result, cursorAllocator, executorService, processing));
executorService.submit(new BatchJob(
scan, batchSize, db, consumer, result, cursorAllocator, executorService, processing));
while (processAndReport(cursor)) {
// just continue processing...
}
}
}
tx.commit();
executionContext.complete();
executionContext.close();
return null;
} finally {
result.batches.incrementAndGet();
processing.decrementAndGet();
}
}
private boolean processAndReport(NodeCursor cursor) {
if (cursor.next()) {
try {
consumer.accept(cursor);
result.incrementSuceeded();
} catch (Exception e) {
result.incrementFailures();
}
return true;
}
return false;
}
}
}