apoc.util.kernel.MultiThreadedGlobalGraphOperations Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of apoc-common Show documentation
Show all versions of apoc-common Show documentation
Data types package for Neo4j Procedures
package apoc.util.kernel;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.concurrent.atomic.AtomicLong;
import java.util.function.Consumer;
import java.util.function.Function;
import org.neo4j.internal.kernel.api.NodeCursor;
import org.neo4j.internal.kernel.api.Read;
import org.neo4j.internal.kernel.api.Scan;
import org.neo4j.internal.kernel.api.security.AccessMode;
import org.neo4j.internal.kernel.api.security.LoginContext;
import org.neo4j.kernel.api.KernelTransaction;
import org.neo4j.kernel.impl.coreapi.InternalTransaction;
import org.neo4j.kernel.internal.GraphDatabaseAPI;
public class MultiThreadedGlobalGraphOperations {
public static BatchJobResult forAllNodes(GraphDatabaseAPI db, ExecutorService executorService, int batchSize, Consumer consumer) {
BatchJobResult result = new BatchJobResult();
AtomicInteger processing = new AtomicInteger();
try ( InternalTransaction tx = db.beginTransaction( KernelTransaction.Type.EXPLICIT, LoginContext.AUTH_DISABLED ) ) {
KernelTransaction ktx = tx.kernelTransaction();
Function> scanFunction = Read::allNodesScan;
Scan scan = scanFunction.apply( ktx.dataRead() );
Function cursorAllocator = ktx2 -> ktx2.cursors().allocateNodeCursor( ktx2.cursorContext() );
executorService.submit( new BatchJob( scan, batchSize, db, consumer, result, cursorAllocator, executorService, processing ) );
}
try {
while ( processing.get() > 0 ) {
Thread.sleep( 10 );
}
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
return result;
}
public static class BatchJobResult {
final AtomicInteger batches = new AtomicInteger();
final AtomicLong succeeded = new AtomicLong();
final AtomicLong failures = new AtomicLong();
public void incrementSuceeded() {
succeeded.incrementAndGet();
}
public void incrementFailures() {
failures.incrementAndGet();
}
public long getSucceeded() {
return succeeded.get();
}
public long getFailures() {
return failures.get();
}
}
private static class BatchJob implements Callable {
private final Scan scan;
private final int batchSize;
private final GraphDatabaseAPI db;
private final Consumer consumer;
private final BatchJobResult result;
private final Function cursorAllocator;
private final ExecutorService executorService;
private final AtomicInteger processing;
public BatchJob(Scan scan, int batchSize, GraphDatabaseAPI db, Consumer consumer,
BatchJobResult result, Function cursorAllocator, ExecutorService executorService, AtomicInteger processing ) {
this.scan = scan;
this.batchSize = batchSize;
this.db = db;
this.consumer = consumer;
this.result = result;
this.cursorAllocator = cursorAllocator;
this.executorService = executorService;
this.processing = processing;
processing.incrementAndGet();
}
@Override
public Void call() {
try (InternalTransaction tx = db.beginTransaction(KernelTransaction.Type.EXPLICIT, LoginContext.AUTH_DISABLED)) {
KernelTransaction ktx = tx.kernelTransaction();
try ( NodeCursor cursor = cursorAllocator.apply( ktx )) {
if (scan.reserveBatch( cursor, batchSize, ktx.cursorContext(), AccessMode.Static.FULL )) {
// Branch out so that all available threads will get saturated
executorService.submit( new BatchJob( scan, batchSize, db, consumer, result, cursorAllocator, executorService, processing ) );
executorService.submit( new BatchJob( scan, batchSize, db, consumer, result, cursorAllocator, executorService, processing ) );
while (processAndReport(cursor)) {
// just continue processing...
}
}
}
tx.commit();
return null;
} finally {
result.batches.incrementAndGet();
processing.decrementAndGet();
}
}
private boolean processAndReport(NodeCursor cursor) {
if (cursor.next()) {
try {
consumer.accept(cursor);
result.incrementSuceeded();
} catch (Exception e) {
result.incrementFailures();
}
return true;
}
return false;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy