All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.neo4j.values.storable.NumberValues Maven / Gradle / Ivy

/*
 * Copyright (c) 2002-2019 "Neo4j,"
 * Neo4j Sweden AB [http://neo4j.com]
 *
 * This file is part of Neo4j.
 *
 * Neo4j is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see .
 */
package org.neo4j.values.storable;

import java.math.BigDecimal;
import java.util.Arrays;

/**
 * Static methods for computing the hashCode of primitive numbers and arrays of primitive numbers.
 * 

* Also compares Value typed number arrays. */ @SuppressWarnings( "WeakerAccess" ) public final class NumberValues { private NumberValues() { } /* * Using the fact that the hashcode ∑x_i * 31^(i-1) can be expressed as * a dot product, [1, v_1, v_2, v_2, ..., v_n] • [31^n, 31^{n-1}, ..., 31, 1]. By expressing * it in that way the compiler is smart enough to better parallelize the * computation of the hash code. */ static final int MAX_LENGTH = 10000; private static final int[] COEFFICIENTS = new int[MAX_LENGTH + 1]; private static final long NON_DOUBLE_LONG = 0xFFE0_0000_0000_0000L; // doubles are exact integers up to 53 bits static { //We are defining the coefficient vector backwards, [1, 31, 31^2,...] //makes it easier and faster do find the starting position later COEFFICIENTS[0] = 1; for ( int i = 1; i <= MAX_LENGTH; ++i ) { COEFFICIENTS[i] = 31 * COEFFICIENTS[i - 1]; } } /* * For equality semantics it is important that the hashcode of a long * is the same as the hashcode of an int as long as the long can fit in 32 bits. */ public static int hash( long number ) { int asInt = (int) number; if ( asInt == number ) { return asInt; } return Long.hashCode( number ); } public static int hash( double number ) { long asLong = (long) number; if ( asLong == number ) { return hash( asLong ); } long bits = Double.doubleToLongBits( number ); return (int) (bits ^ (bits >>> 32)); } /* * This is a slightly silly optimization but by turning the computation * of the hashcode into a dot product we trick the jit compiler to use SIMD * instructions and performance doubles. */ public static int hash( byte[] values ) { final int max = Math.min( values.length, MAX_LENGTH ); int result = COEFFICIENTS[max]; for ( int i = 0; i < values.length && i < COEFFICIENTS.length - 1; ++i ) { result += COEFFICIENTS[max - i - 1] * values[i]; } return result; } public static int hash( short[] values ) { final int max = Math.min( values.length, MAX_LENGTH ); int result = COEFFICIENTS[max]; for ( int i = 0; i < values.length && i < COEFFICIENTS.length - 1; ++i ) { result += COEFFICIENTS[max - i - 1] * values[i]; } return result; } public static int hash( char[] values ) { final int max = Math.min( values.length, MAX_LENGTH ); int result = COEFFICIENTS[max]; for ( int i = 0; i < values.length && i < COEFFICIENTS.length - 1; ++i ) { result += COEFFICIENTS[max - i - 1] * values[i]; } return result; } public static int hash( int[] values ) { final int max = Math.min( values.length, MAX_LENGTH ); int result = COEFFICIENTS[max]; for ( int i = 0; i < values.length && i < COEFFICIENTS.length - 1; ++i ) { result += COEFFICIENTS[max - i - 1] * values[i]; } return result; } public static int hash( long[] values ) { final int max = Math.min( values.length, MAX_LENGTH ); int result = COEFFICIENTS[max]; for ( int i = 0; i < values.length && i < COEFFICIENTS.length - 1; ++i ) { result += COEFFICIENTS[max - i - 1] * NumberValues.hash( values[i] ); } return result; } public static int hash( float[] values ) { int result = 1; for ( float value : values ) { int elementHash = NumberValues.hash( value ); result = 31 * result + elementHash; } return result; } public static int hash( double[] values ) { int result = 1; for ( double value : values ) { int elementHash = NumberValues.hash( value ); result = 31 * result + elementHash; } return result; } public static int hash( boolean[] value ) { return Arrays.hashCode( value ); } public static boolean numbersEqual( double fpn, long in ) { if ( in < 0 ) { if ( fpn < 0.0 ) { if ( (NON_DOUBLE_LONG & in) == 0L ) // the high order bits are only sign bits { // no loss of precision if converting the long to a double, so it's safe to compare as double return fpn == in; } else if ( fpn < Long.MIN_VALUE ) { // the double is too big to fit in a long, they cannot be equal return false; } else if ( (fpn == Math.floor( fpn )) && !Double.isInfinite( fpn ) ) // no decimals { // safe to compare as long return in == (long) fpn; } } } else { if ( !(fpn < 0.0) ) { if ( (NON_DOUBLE_LONG & in) == 0L ) // the high order bits are only sign bits { // no loss of precision if converting the long to a double, so it's safe to compare as double return fpn == in; } else if ( fpn > Long.MAX_VALUE ) { // the double is too big to fit in a long, they cannot be equal return false; } else if ( (fpn == Math.floor( fpn )) && !Double.isInfinite( fpn ) ) // no decimals { // safe to compare as long return in == (long) fpn; } } } return false; } // Tested by PropertyValueComparisonTest public static int compareDoubleAgainstLong( double lhs, long rhs ) { if ( (NON_DOUBLE_LONG & rhs) != 0L ) { if ( Double.isNaN( lhs ) ) { return +1; } if ( Double.isInfinite( lhs ) ) { return lhs < 0 ? -1 : +1; } return BigDecimal.valueOf( lhs ).compareTo( BigDecimal.valueOf( rhs ) ); } return Double.compare( lhs, rhs ); } // Tested by PropertyValueComparisonTest public static int compareLongAgainstDouble( long lhs, double rhs ) { return -compareDoubleAgainstLong( rhs, lhs ); } public static boolean numbersEqual( IntegralArray lhs, IntegralArray rhs ) { int length = lhs.length(); if ( length != rhs.length() ) { return false; } for ( int i = 0; i < length; i++ ) { if ( lhs.longValue( i ) != rhs.longValue( i ) ) { return false; } } return true; } public static boolean numbersEqual( FloatingPointArray lhs, FloatingPointArray rhs ) { int length = lhs.length(); if ( length != rhs.length() ) { return false; } for ( int i = 0; i < length; i++ ) { if ( lhs.doubleValue( i ) != rhs.doubleValue( i ) ) { return false; } } return true; } public static boolean numbersEqual( FloatingPointArray fps, IntegralArray ins ) { int length = ins.length(); if ( length != fps.length() ) { return false; } for ( int i = 0; i < length; i++ ) { if ( !numbersEqual( fps.doubleValue( i ), ins.longValue( i ) ) ) { return false; } } return true; } public static int compareIntegerArrays( IntegralArray a, IntegralArray b ) { int i = 0; int x = 0; int length = Math.min( a.length(), b.length() ); while ( x == 0 && i < length ) { x = Long.compare( a.longValue( i ), b.longValue( i ) ); i++; } if ( x == 0 ) { x = a.length() - b.length(); } return x; } public static int compareIntegerVsFloatArrays( IntegralArray a, FloatingPointArray b ) { int i = 0; int x = 0; int length = Math.min( a.length(), b.length() ); while ( x == 0 && i < length ) { x = compareLongAgainstDouble( a.longValue( i ), b.doubleValue( i ) ); i++; } if ( x == 0 ) { x = a.length() - b.length(); } return x; } public static int compareFloatArrays( FloatingPointArray a, FloatingPointArray b ) { int i = 0; int x = 0; int length = Math.min( a.length(), b.length() ); while ( x == 0 && i < length ) { x = Double.compare( a.doubleValue( i ), b.doubleValue( i ) ); i++; } if ( x == 0 ) { x = a.length() - b.length(); } return x; } public static int compareBooleanArrays( BooleanArray a, BooleanArray b ) { int i = 0; int x = 0; int length = Math.min( a.length(), b.length() ); while ( x == 0 && i < length ) { x = Boolean.compare( a.booleanValue( i ), b.booleanValue( i ) ); i++; } if ( x == 0 ) { x = a.length() - b.length(); } return x; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy