All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.netbeans.lib.profiler.heap.LongHashMap Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */
package org.netbeans.lib.profiler.heap;

import java.io.DataInputStream;
import java.io.DataOutputStream;
import java.io.IOException;
import java.util.Arrays;
import java.util.Map;

/**
 * Map for longs. IdentityHashMap was used as template.
 * Zero cannot be used as key. Load factor is 3/4.
 * @author Tomas Hurka
 */
class LongHashMap {
    /**
     * The initial capacity used by the no-args constructor.
     * MUST be a power of two.
     */
    private static final int DEFAULT_CAPACITY = 32;

    /**
     * The minimum capacity, used if a lower value is implicitly specified
     * by either of the constructors with arguments.  The value 4 corresponds
     * to an expected maximum size of 2, given a load factor of 2/3.
     * MUST be a power of two.
     */
    private static final int MINIMUM_CAPACITY = 4;

    /**
     * The maximum capacity, used if a higher value is implicitly specified
     * by either of the constructors with arguments.
     * MUST be a power of two <= 1<<29.
     */
    private static final int MAXIMUM_CAPACITY = 1 << 29;

    /**
     * The table, resized as necessary. Length MUST always be a power of two.
     */
    private transient long[] table;

    /**
     * The number of key-value mappings contained in this identity hash map.
     *
     * @serial
     */
    private int size;

    /**
     * The number of modifications, to support fast-fail iterators
     */
    private transient int modCount;

    /**
     * The next size value at which to resize (capacity * load factor).
     */
    private transient int threshold;

    /**
     * Constructs a new, empty identity hash map with a default expected
     * maximum size.
     */
    LongHashMap() {
        init(DEFAULT_CAPACITY);
    }

    /**
     * Constructs a new, empty map with the specified expected maximum size.
     * Putting more than the expected number of key-value mappings into
     * the map may cause the internal data structure to grow, which may be
     * somewhat time-consuming.
     *
     * @param expectedMaxSize the expected maximum size of the map
     * @throws IllegalArgumentException if expectedMaxSize is negative
     */
    LongHashMap(int expectedMaxSize) {
        if (expectedMaxSize < 0)
            throw new IllegalArgumentException("expectedMaxSize is negative: "
                                               + expectedMaxSize);
        init(capacity(expectedMaxSize));
    }

    /**
     * Returns the appropriate capacity for the specified expected maximum
     * size.  Returns the smallest power of two between MINIMUM_CAPACITY
     * and MAXIMUM_CAPACITY, inclusive, that is greater than
     * (4 * expectedMaxSize)/3, if such a number exists.  Otherwise
     * returns MAXIMUM_CAPACITY.  If (4 * expectedMaxSize)/3 is negative, it
     * is assumed that overflow has occurred, and MAXIMUM_CAPACITY is returned.
     */
    private int capacity(int expectedMaxSize) {
        // Compute min capacity for expectedMaxSize given a load factor of 3/4
        int minCapacity = (4 * expectedMaxSize)/3;

        // Compute the appropriate capacity
        int result;
        if (minCapacity > MAXIMUM_CAPACITY || minCapacity < 0) {
            result = MAXIMUM_CAPACITY;
        } else {
            result = MINIMUM_CAPACITY;
            while (result < minCapacity)
                result <<= 1;
        }
        return result;
    }

    /**
     * Initializes object to be an empty map with the specified initial
     * capacity, which is assumed to be a power of two between
     * MINIMUM_CAPACITY and MAXIMUM_CAPACITY inclusive.
     */
    private void init(int initCapacity) {
        assert (initCapacity & -initCapacity) == initCapacity; // power of 2
        assert initCapacity >= MINIMUM_CAPACITY;
        assert initCapacity <= MAXIMUM_CAPACITY;

        threshold = (initCapacity * 3)/ 4;
        table = new long[2 * initCapacity];
    }

    /**
     * Returns the number of key-value mappings in this identity hash map.
     *
     * @return the number of key-value mappings in this map
     */
    int size() {
        return size;
    }

    /**
     * Returns true if this identity hash map contains no key-value
     * mappings.
     *
     * @return true if this identity hash map contains no key-value
     *         mappings
     */
    boolean isEmpty() {
        return size == 0;
    }

    /**
     * Returns index for Object x.
     */
    private static int hash(long x, int length) {
        int h = (int)(x ^ (x >>> 32));
        // This function ensures that hashCodes that differ only by
        // constant multiples at each bit position have a bounded
        // number of collisions (approximately 8 at default load factor).
        h ^= (h >>> 20) ^ (h >>> 12);
        h ^= (h >>> 7) ^ (h >>> 4);
        return (h) & (length - 2);
    }

    /**
     * Circularly traverses table of size len.
     */
    private static int nextKeyIndex(int i, int len) {
        return (i + 2 < len ? i + 2 : 0);
    }

    /**
     * Returns the value to which the specified key is mapped,
     * or {@code null} if this map contains no mapping for the key.
     *
     * 

More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code (key == k)}, * then this method returns {@code v}; otherwise it returns * {@code null}. (There can be at most one such mapping.) * *

A return value of {@code null} does not necessarily * indicate that the map contains no mapping for the key; it's also * possible that the map explicitly maps the key to {@code null}. * The {@link #containsKey containsKey} operation may be used to * distinguish these two cases. * * @see #put(Object, Object) */ long get(long key) { long k = key; long[] tab = table; int len = tab.length; int i = hash(k, len); while (true) { long item = tab[i]; if (item == k) return tab[i + 1]; if (item == 0) return -1; i = nextKeyIndex(i, len); } } /** * Tests whether the specified object reference is a key in this identity * hash map. * * @param key possible key * @return true if the specified object reference is a key * in this map * @see #containsValue(Object) */ boolean containsKey(long key) { long k = key; long[] tab = table; int len = tab.length; int i = hash(k, len); while (true) { long item = tab[i]; if (item == k) return true; if (item == 0) return false; i = nextKeyIndex(i, len); } } /** * Tests whether the specified object reference is a value in this identity * hash map. * * @param value value whose presence in this map is to be tested * @return true if this map maps one or more keys to the * specified object reference * @see #containsKey(Object) */ boolean containsValue(long value) { long[] tab = table; for (int i = 1; i < tab.length; i += 2) if (tab[i] == value && tab[i - 1] != 0) return true; return false; } /** * Tests if the specified key-value mapping is in the map. * * @param key possible key * @param value possible value * @return true if and only if the specified key-value * mapping is in the map */ private boolean containsMapping(long key, long value) { long k = key; long[] tab = table; int len = tab.length; int i = hash(k, len); while (true) { long item = tab[i]; if (item == k) return tab[i + 1] == value; if (item == 0) return false; i = nextKeyIndex(i, len); } } /** * Associates the specified value with the specified key in this identity * hash map. If the map previously contained a mapping for the key, the * old value is replaced. * * @param key the key with which the specified value is to be associated * @param value the value to be associated with the specified key * @return the previous value associated with key, or * null if there was no mapping for key. * (A null return can also indicate that the map * previously associated null with key.) * @see Object#equals(Object) * @see #get(Object) * @see #containsKey(Object) */ long put(long key, long value) { assert key != 0; assert value != -1; long k = key; long[] tab = table; int len = tab.length; int i = hash(k, len); long item; while ( (item = tab[i]) != 0) { if (item == k) { long oldValue = tab[i + 1]; tab[i + 1] = value; return oldValue; } i = nextKeyIndex(i, len); } modCount++; tab[i] = k; tab[i + 1] = value; if (++size >= threshold) resize(len); // len == 2 * current capacity. return -1; } /** * Resize the table to hold given capacity. * * @param newCapacity the new capacity, must be a power of two. */ private void resize(int newCapacity) { // assert (newCapacity & -newCapacity) == newCapacity; // power of 2 int newLength = newCapacity * 2; long[] oldTable = table; int oldLength = oldTable.length; if (oldLength == 2*MAXIMUM_CAPACITY) { // can't expand any further if (threshold == MAXIMUM_CAPACITY-1) throw new IllegalStateException("Capacity exhausted."); threshold = MAXIMUM_CAPACITY-1; // Gigantic map! return; } if (oldLength >= newLength) return; long[] newTable = new long[newLength]; threshold = (newCapacity * 3) / 4; for (int j = 0; j < oldLength; j += 2) { long key = oldTable[j]; if (key != 0) { long value = oldTable[j+1]; int i = hash(key, newLength); while (newTable[i] != 0) i = nextKeyIndex(i, newLength); newTable[i] = key; newTable[i + 1] = value; } } table = newTable; } /** * Copies all of the mappings from the specified map to this map. * These mappings will replace any mappings that this map had for * any of the keys currently in the specified map. * * @param m mappings to be stored in this map * @throws NullPointerException if the specified map is null */ void putAll(Map m) { int n = m.size(); if (n == 0) return; if (n > threshold) // conservatively pre-expand resize(capacity(n)); for (Map.Entry e : m.entrySet()) put(e.getKey(), e.getValue()); } /** * Removes the mapping for this key from this map if present. * * @param key key whose mapping is to be removed from the map * @return the previous value associated with key, or * null if there was no mapping for key. * (A null return can also indicate that the map * previously associated null with key.) */ long remove(long key) { long k = key; long[] tab = table; int len = tab.length; int i = hash(k, len); while (true) { long item = tab[i]; if (item == k) { modCount++; size--; long oldValue = tab[i + 1]; tab[i + 1] = 0; tab[i] = 0; closeDeletion(i); return oldValue; } if (item == 0) return -1; i = nextKeyIndex(i, len); } } /** * Removes the specified key-value mapping from the map if it is present. * * @param key possible key * @param value possible value * @return true if and only if the specified key-value * mapping was in the map */ private boolean removeMapping(long key, long value) { long k = key; long[] tab = table; int len = tab.length; int i = hash(k, len); while (true) { long item = tab[i]; if (item == k) { if (tab[i + 1] != value) return false; modCount++; size--; tab[i] = 0; tab[i + 1] = 0; closeDeletion(i); return true; } if (item == 0) return false; i = nextKeyIndex(i, len); } } /** * Rehash all possibly-colliding entries following a * deletion. This preserves the linear-probe * collision properties required by get, put, etc. * * @param d the index of a newly empty deleted slot */ private void closeDeletion(int d) { // Adapted from Knuth Section 6.4 Algorithm R long[] tab = table; int len = tab.length; // Look for items to swap into newly vacated slot // starting at index immediately following deletion, // and continuing until a null slot is seen, indicating // the end of a run of possibly-colliding keys. long item; for (int i = nextKeyIndex(d, len); (item = tab[i]) != 0; i = nextKeyIndex(i, len) ) { // The following test triggers if the item at slot i (which // hashes to be at slot r) should take the spot vacated by d. // If so, we swap it in, and then continue with d now at the // newly vacated i. This process will terminate when we hit // the null slot at the end of this run. // The test is messy because we are using a circular table. int r = hash(item, len); if ((i < r && (r <= d || d <= i)) || (r <= d && d <= i)) { tab[d] = item; tab[d + 1] = tab[i + 1]; tab[i] = 0; tab[i + 1] = 0; d = i; } } } /** * Removes all of the mappings from this map. * The map will be empty after this call returns. */ void clear() { modCount++; long[] tab = table; Arrays.fill(tab, 0); size = 0; } /** * Compares the specified object with this map for equality. Returns * true if the given object is also a map and the two maps * represent identical object-reference mappings. More formally, this * map is equal to another map m if and only if * this.entrySet().equals(m.entrySet()). * *

Owing to the reference-equality-based semantics of this map it is * possible that the symmetry and transitivity requirements of the * Object.equals contract may be violated if this map is compared * to a normal map. However, the Object.equals contract is * guaranteed to hold among LongHashMap instances. * * @param o object to be compared for equality with this map * @return true if the specified object is equal to this map * @see Object#equals(Object) */ @Override public boolean equals(Object o) { if (o == this) { return true; } else if (o instanceof LongHashMap) { LongHashMap m = (LongHashMap) o; if (m.size() != size) return false; long[] tab = m.table; for (int i = 0; i < tab.length; i+=2) { long k = tab[i]; if (k != 0 && !containsMapping(k, tab[i + 1])) return false; } return true; } else if (o instanceof Map) { Map m = (Map)o; return false; } else { return false; // o is not a Map } } /** * Returns the hash code value for this map. The hash code of a map is * defined to be the sum of the hash codes of each entry in the map's * entrySet() view. This ensures that m1.equals(m2) * implies that m1.hashCode()==m2.hashCode() for any two * IdentityHashMap instances m1 and m2, as * required by the general contract of {@link Object#hashCode}. * *

Owing to the reference-equality-based semantics of the * Map.Entry instances in the set returned by this map's * entrySet method, it is possible that the contractual * requirement of Object.hashCode mentioned in the previous * paragraph will be violated if one of the two objects being compared is * an LongHashMap instance and the other is a normal map. * * @return the hash code value for this map * @see Object#equals(Object) * @see #equals(Object) */ @Override public int hashCode() { int result = 0; long[] tab = table; for (int i = 0; i < tab.length; i +=2) { long key = tab[i]; if (key != 0) { long k = key; result += hash(k,tab.length) ^ hash(tab[i + 1],tab.length); } } return result; } //---- Serialization support void writeToStream(DataOutputStream out) throws IOException { out.writeInt(modCount); out.writeInt(size); out.writeInt(threshold); out.writeInt(table.length); for (int i = 0; i < table.length; i++) { out.writeLong(table[i]); } } LongHashMap(DataInputStream dis) throws IOException { modCount = dis.readInt(); size = dis.readInt(); threshold = dis.readInt(); table = new long[dis.readInt()]; for (int i = 0; i < table.length; i++) { table[i] = dis.readLong(); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy