org.nield.kotlinstatistics.Clustering.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of kotlin-statistics Show documentation
Show all versions of kotlin-statistics Show documentation
Statistical and analytical extensions for Kotlin
The newest version!
package org.nield.kotlinstatistics
import org.apache.commons.math3.ml.clustering.*
fun Collection>.kMeansCluster(k: Int, maxIterations: Int) = kMeansCluster(k, maxIterations, {it.first}, {it.second})
fun Sequence>.kMeansCluster(k: Int, maxIterations: Int) = toList().kMeansCluster(k, maxIterations, {it.first}, {it.second})
inline fun Collection.kMeansCluster(k: Int, maxIterations: Int, crossinline xSelector: (T) -> Double, crossinline ySelector: (T) -> Double) =
asSequence().map { ClusterInput(it, doubleArrayOf(xSelector(it), ySelector(it))) }
.toList()
.let {
KMeansPlusPlusClusterer>(k,maxIterations)
.cluster(it)
.map {
Centroid((it.center).point.let { DoublePoint(it[0],it[1])}, it.points.map { it.item })
}
}
inline fun Sequence.kMeansCluster(k: Int, maxIterations: Int, crossinline xSelector: (T) -> Double, crossinline ySelector: (T) -> Double) =
toList().kMeansCluster(k,maxIterations,xSelector,ySelector)
inline fun Collection.fuzzyKMeansCluster(k: Int, fuzziness: Double, crossinline xSelector: (T) -> Double, crossinline ySelector: (T) -> Double) =
asSequence().map { ClusterInput(it, doubleArrayOf(xSelector(it), ySelector(it))) }
.toList()
.let {
FuzzyKMeansClusterer>(k,fuzziness)
.cluster(it)
.map {
Centroid((it.center).point.let { DoublePoint(it[0],it[1])}, it.points.map { it.item })
}
}
inline fun Sequence.fuzzyKMeansCluster(k: Int, fuzziness: Double, crossinline xSelector: (T) -> Double, crossinline ySelector: (T) -> Double) =
toList().fuzzyKMeansCluster(k,fuzziness,xSelector,ySelector)
fun Collection>.multiKMeansCluster(k: Int, maxIterations: Int, trialCount: Int) = multiKMeansCluster(k, maxIterations, trialCount, {it.first}, {it.second})
fun Sequence>.multiKMeansCluster(k: Int, maxIterations: Int, trialCount: Int) = toList().multiKMeansCluster(k, maxIterations, trialCount, {it.first}, {it.second})
inline fun Sequence.multiKMeansCluster(k: Int, maxIterations: Int, trialCount: Int, crossinline xSelector: (T) -> Double, crossinline ySelector: (T) -> Double) =
toList().multiKMeansCluster(k, maxIterations, trialCount, xSelector, ySelector)
inline fun Collection.multiKMeansCluster(k: Int, maxIterations: Int, trialCount: Int, crossinline xSelector: (T) -> Double, crossinline ySelector: (T) -> Double) =
asSequence().map { ClusterInput(it, doubleArrayOf(xSelector(it), ySelector(it))) }
.toList()
.let { list ->
KMeansPlusPlusClusterer>(k, maxIterations)
.let {
MultiKMeansPlusPlusClusterer>(it, trialCount)
.cluster(list)
.map {
Centroid(DoublePoint(-1.0,-1.0), it.points.map { it.item })
}
}
}
inline fun Collection.dbScanCluster(maximumRadius: Double, minPoints: Int, crossinline xSelector: (T) -> Double, crossinline ySelector: (T) -> Double) =
asSequence().map { ClusterInput(it, doubleArrayOf(xSelector(it), ySelector(it))) }
.toList()
.let {
DBSCANClusterer>(maximumRadius,minPoints)
.cluster(it)
.map {
Centroid(DoublePoint(-1.0,-1.0), it.points.map { it.item })
}
}
inline fun Sequence.dbScanCluster(maximumRadius: Double, minPoints: Int, crossinline xSelector: (T) -> Double, crossinline ySelector: (T) -> Double) =
toList().dbScanCluster(maximumRadius,minPoints,xSelector,ySelector)
class ClusterInput(val item: T, val location: DoubleArray): Clusterable {
override fun getPoint() = location
}
data class DoublePoint(val x: Double, val y: Double)
data class Centroid(val center: DoublePoint, val points: List)