org.nield.kotlinstatistics.Random.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of kotlin-statistics Show documentation
Show all versions of kotlin-statistics Show documentation
Statistical and analytical extensions for Kotlin
The newest version!
package org.nield.kotlinstatistics
import java.util.concurrent.ThreadLocalRandom
/**
* Samples a single random element `T` from a `List`, and throws an error if no elements exist
*/
fun List.randomFirst() = randomFirstOrNull()?: throw Exception("No elements found!")
/**
* Samples a single random element `T` from a `List`, and returns `null` if no elements exist
*/
fun List.randomFirstOrNull(): T? {
if (size == 0) return null
val random = ThreadLocalRandom.current().nextInt(0,size)
return this[random]
}
/**
* Samples a single random element `T` from a `Sequence`, and throws an error if no elements exist
*/
fun Sequence.randomFirst() = toList().randomFirst()
/**
* Samples a single random element `T` from a `Sequence`, and returns `null` if no elements exist
*/
fun Sequence.randomFirstOrNull() = toList().randomFirstOrNull()
/**
* Samples a single random element `T` from a `Sequence`, and throws an error if no elements exist
*/
fun Iterable.randomFirst() = toList().randomFirst()
/**
* Samples a single random element `T` from an `Iterable`, and returns `null` if no elements exist
*/
fun Iterable.randomFirstOrNull() = toList().randomFirstOrNull()
/**
* Samples `n` distinct random elements `T` from a `Sequence`
*/
fun Sequence.randomDistinct(sampleSize: Int) = toList().randomDistinct(sampleSize)
/**
* Samples `n` distinct random elements `T` from an `Iterable`
*/
fun List.randomDistinct(sampleSize: Int): List {
val cappedSampleSize = if (sampleSize > size) size else sampleSize
return (0..Int.MAX_VALUE).asSequence().map {
ThreadLocalRandom.current().nextInt(0,size)
}.distinct()
.take(cappedSampleSize)
.map { this[it] }
.toList()
}
/**
* Samples `n` random elements `T` from a `Sequence`
*/
fun Sequence.random(sampleSize: Int) = toList().random(sampleSize)
/**
* Samples `n` random elements `T` from an `Iterable`
*/
fun List.random(sampleSize: Int): List {
val cappedSampleSize = if (sampleSize > size) size else sampleSize
return (0..Int.MAX_VALUE).asSequence().map {
ThreadLocalRandom.current().nextInt(0,size)
}.take(cappedSampleSize)
.map { this[it] }
.toList()
}
/**
* Simulates a weighted TRUE/FALSE coin flip, with a percentage of probability towards TRUE
*
* In other words, this is a Probability Density Function (PDF) for discrete TRUE/FALSE values
*/
class WeightedCoin(val trueProbability: Double) {
fun flip() = ThreadLocalRandom.current().nextDouble(0.0,1.0) <= trueProbability
}
/**
* Simulates a weighted TRUE/FALSE coin flip, with a percentage of probability towards TRUE
*
* In other words, this is a Probability Density Function (PDF) for discrete TRUE/FALSE values
*/
fun weightedCoinFlip(trueProbability: Double) =
ThreadLocalRandom.current().nextDouble(0.0,1.0) <= trueProbability
/**
* Assigns a probabilty to each distinct `T` item, and randomly selects `T` values given those probabilities.
*
* In other words, this is a Probability Density Function (PDF) for discrete `T` values
*/
class WeightedDice(val probabilities: Map) {
constructor(vararg values: Pair): this(
values.toMap()
)
private val sum = probabilities.values.sum()
val rangedDistribution = probabilities.let {
var binStart = 0.0
it.asSequence().sortedBy { it.value }
.map { it.key to OpenDoubleRange(binStart, it.value + binStart) }
.onEach { binStart = it.second.endExclusive }
.toMap()
}
/**
* Randomly selects a `T` value with probability
*/
fun roll() = ThreadLocalRandom.current().nextDouble(0.0, sum).let {
rangedDistribution.asIterable().first { rng -> it in rng.value }.key
}
}