
org.ode4j.ode.DMatrix Maven / Gradle / Ivy
/*************************************************************************
* *
* Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
* All rights reserved. Email: [email protected] Web: www.q12.org *
* Open Dynamics Engine 4J, Copyright (C) 2009-2014 Tilmann Zaeschke *
* All rights reserved. Email: [email protected] Web: www.ode4j.org *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of EITHER: *
* (1) The GNU Lesser General Public License as published by the Free *
* Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. The text of the GNU Lesser *
* General Public License is included with this library in the *
* file LICENSE.TXT. *
* (2) The BSD-style license that is included with this library in *
* the file ODE-LICENSE-BSD.TXT and ODE4J-LICENSE-BSD.TXT. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
* LICENSE.TXT, ODE-LICENSE-BSD.TXT and ODE4J-LICENSE-BSD.TXT for more *
* details. *
* *
*************************************************************************/
package org.ode4j.ode;
import java.util.Arrays;
import org.ode4j.math.DMatrix3;
import org.ode4j.math.DMatrix3C;
import org.ode4j.math.DVector3;
import org.ode4j.math.DVector3C;
import org.ode4j.ode.internal.Matrix;
/**
* Matrix math functions. Ported from matrix.h in C-interface.
*
* @author Tilmann Zaeschke
*/
public class DMatrix extends DMisc {
// from matrix.h
/**
* Set a vector/matrix to all zeros.
* @param a a
*/
public static void dSetZero (double[] a) {
Arrays.fill(a,0);
}
/**
* Set a vector/matrix to all zeros.
* @param a a
* @param aOfs offset
* @param aLen length
*/
public static void dSetZero (double[] a, int aOfs, int aLen) {
//Arrays.fill(a, aOfs, aOfs+aLen, 0);
for (int i = aOfs; i < aOfs+aLen; i++) {
a[i] = 0;
}
}
/**
* Set a vector/matrix to a specific value.
* @param a a
* @param value value
*/
public static void dSetValue (DVector3 a, double value) {
a.set(value, value, value);
}
public static void dSetValue (int[] a, int pos, int len, int value) {
for (int i = pos; i < len+pos; i++) {
a[i] = value;
}
}
// /**
// * Get the dot product of two n*1 vectors. if n <= 0 then
// * zero will be returned (in which case a and b need not be valid).
// */
// public static double dDot (DVector3C a, DVector3C b, int n) {
// return a.dot(b);
// }
// /**
// * Get the dot products of (a0,b), (a1,b), etc and return them in outsum.
// * all vectors are n*1. if n <= 0 then zeroes will be returned (in which case
// * the input vectors need not be valid). this function is somewhat faster
// * than calling dDot() for all of the combinations separately.
// */
//
// /* NOT INCLUDED in the library for now.
// void static dMultidot2 (const dReal *a0, const dReal *a1,
// const dReal *b, dReal *outsum, int n);
// */
/**
* Matrix multiplication. all matrices are stored in standard row format.
* the digit refers to the argument that is transposed:
* 0: A = B * C (sizes: A:p*r B:p*q C:q*r)
* 1: A = B' * C (sizes: A:p*r B:q*p C:q*r)
* 2: A = B * C' (sizes: A:p*r B:p*q C:r*q)
* case 1,2 are equivalent to saying that the operation is A=B*C but
* B or C are stored in standard column format.
* @param a a
* @param b b
* @param C C
*/
public static void dMultiply0 (DVector3 a, DVector3C b, DMatrix3C C) {
Matrix.dMultiply0(a, b, C);
}
/**
* @param a a
* @param B B
* @param c c
* @see DMatrix#dMultiply0(DVector3, DVector3C, DMatrix3C)
*/
public static void dMultiply0 (DVector3 a, DMatrix3C B, DVector3C c) {
Matrix.dMultiply0(a, B, c);
}
/**
* @param A A
* @param B B
* @param C C
* @see DMatrix#dMultiply0(DVector3, DVector3C, DMatrix3C)
*/
public static void dMultiply0 (DMatrix3 A, DMatrix3C B, DMatrix3C C) {
Matrix.dMultiply0(A, B, C);
}
/**
* @param A A
* @param B B
* @param C C
* @param p p
* @param q q
* @param r r
* @see DMatrix#dMultiply0(DVector3, DVector3C, DMatrix3C)
*/
public static void dMultiply0 (double[] A, final double[] B, final double[] C, int p, int q, int r) {
Matrix.dMultiply0(A, B, C, p, q, r);
}
/**
* @param a a
* @param B B
* @param c c
* @see DMatrix#dMultiply0(DVector3, DVector3C, DMatrix3C)
*/
public static void dMultiply1 (DVector3 a, DMatrix3C B, DVector3C c) {
Matrix.dMultiply1(a, B, c);
}
/**
* @param A A
* @param B B
* @param C C
* @see DMatrix#dMultiply0(DVector3, DVector3C, DMatrix3C)
*/
public static void dMultiply1 (DMatrix3 A, DMatrix3C B, DMatrix3C C) {
Matrix.dMultiply1(A, B, C);
}
/**
* @param A A
* @param B B
* @param C C
* @param p p
* @param q q
* @param r r
* @see DMatrix#dMultiply0(DVector3, DVector3C, DMatrix3C)
*/
public static void dMultiply1 (double[] A, final double[] B, final double[] C, int p, int q, int r) {
Matrix.dMultiply1(A, B, C, p, q, r);
}
/**
* @param a a
* @param B B
* @param c c
* @see DMatrix#dMultiply0(DVector3, DVector3C, DMatrix3C)
*/
public static void dMultiply2 (DVector3 a, DMatrix3C B, DVector3C c) {
Matrix.dMultiply2(a, B, c);
}
/**
* @param A A
* @param B B
* @param C C
* @see DMatrix#dMultiply0(DVector3, DVector3C, DMatrix3C)
*/
public static void dMultiply2 (DMatrix3 A, DMatrix3C B, DMatrix3C C) {
Matrix.dMultiply2(A, B, C);
}
/**
* @param A A
* @param B B
* @param C C
* @param p p
* @param q q
* @param r r
* @see DMatrix#dMultiply0(DVector3, DVector3C, DMatrix3C)
*/
public static void dMultiply2 (double[] A, final double[] B, final double[] C, int p, int q, int r) {
Matrix.dMultiply2(A, B, C, p, q, r);
}
/**
* Do an in-place cholesky decomposition on the lower triangle of the n*n
* symmetric matrix A (which is stored by rows). the resulting lower triangle
* will be such that L*L'=A. return 'true' on success and 'false' on failure (on failure
* the matrix is not positive definite).
* @param A matrix
* @return 'false' if it failed
*/
public static boolean dFactorCholesky (DMatrix3 A) {
return Matrix.dFactorCholesky(A);
}
/**
* Do an in-place cholesky decomposition on the lower triangle of the n*n
* symmetric matrix A (which is stored by rows). the resulting lower triangle
* will be such that L*L'=A. return 'true' on success and 'false' on failure (on failure
* the matrix is not positive definite).
* @param A Matrix
* @param n n
* @return false if it failed
*/
public static boolean dFactorCholesky (double[] A, int n) {
return Matrix.dFactorCholesky(A, n);
}
/**
* Solve for x: L*L'*x = b, and put the result back into x.
* L is size n*n, b is size n*1. only the lower triangle of L is considered.
* @param L Matrix
* @param x vector
*/
public static void dSolveCholesky (DMatrix3C L, DVector3 x) {
Matrix.dSolveCholesky(L, x);
}
/**
* Solve for x: L*L'*x = b, and put the result back into x.
* L is size n*n, b is size n*1. only the lower triangle of L is considered.
* @param L matrix
* @param x vector
* @param n n
*/
public static void dSolveCholesky (double[] L, double[] x, int n) {
Matrix.dSolveCholesky(L, x, n);
}
/**
* Compute the inverse of the n*n positive definite matrix A and put it in
* Ainv. this is not especially fast. this returns 'true' on success (A was
* positive definite) or 'false' on failure (not PD).
* @param A A
* @param Ainv result
* @return 'false' on failure
*/
public static boolean dInvertPDMatrix (DMatrix3C A, DMatrix3 Ainv) {
return Matrix.dInvertPDMatrix(A, Ainv);
}
public static boolean dInvertPDMatrix (double[] A, double[] Ainv, int n) {
return Matrix.dInvertPDMatrix(A, Ainv, n);
}
/**
* Check whether an n*n matrix A is positive definite, return 1/0 (yes/no).
* positive definite means that x'*A*x > 0 for any x. this performs a
* cholesky decomposition of A. if the decomposition fails then the matrix
* is not positive definite. A is stored by rows. A is not altered.
* @param A matrix
* @return false on failure
*/
public static boolean dIsPositiveDefinite (DMatrix3C A) {
return Matrix.dIsPositiveDefinite(A);
}
public static boolean dIsPositiveDefinite (double[] A, int n) {
return Matrix.dIsPositiveDefinite(A, n);
}
/**
* Factorize a matrix A into L*D*L', where L is lower triangular with ones on
* the diagonal, and D is diagonal.
* A is an n*n matrix stored by rows, with a leading dimension of n rounded
* up to 4. L is written into the strict lower triangle of A (the ones are not
* written) and the reciprocal of the diagonal elements of D are written into
* d.
* @param A A
* @param d d
* @param n n
* @param nskip nskip
*/
public static void dFactorLDLT (double[] A, double[] d, int n, int nskip) {
Matrix.dFactorLDLT(A, d, n, nskip);
}
// /**
// * Solve L*x=b, where L is n*n lower triangular with ones on the diagonal,
// * and x,b are n*1. b is overwritten with x.
// * the leading dimension of L is `nskip'.
// */
// public static void dSolveL1 (const dReal *L, dReal *b, int n, int nskip) {
// Matrix.dSolveL1;
// }
// /**
// * Solve L'*x=b, where L is n*n lower triangular with ones on the diagonal,
// * and x,b are n*1. b is overwritten with x.
// * the leading dimension of L is `nskip'.
// */
// public void dSolveL1T (const dReal *L, dReal *b, int n, int nskip);
/* in matlab syntax: a(1:n) = a(1:n) .* d(1:n)
*/
/**
* In matlab syntax: a(1:n) = a(1:n) .* d(1:n)
* @param a a
* @param d d
*/
// ODE_API
public static void dScaleVector (DVector3 a, DVector3C d) {
a.scale(d);
}
/**
* The function is an alias for @c dScaleVector.
* It has been deprecated because of a wrong naming schema used.
* @param a a
* @param d d
*/
@Deprecated // deprecated in ODE
public static void dVectorScale (DVector3 a, DVector3C d) {
a.scale(d);
}
/**
* Given `L', a n*n lower triangular matrix with ones on the diagonal,
* and `d', a n*1 vector of the reciprocal diagonal elements of an n*n matrix
* D, solve L*D*L'*x=b where x,b are n*1. x overwrites b.
* the leading dimension of L is `nskip'.
* @param L L
* @param d d
* @param b b
* @param n n
* @param nskip nskip
*/
public static void dSolveLDLT (double[] L, double[] d, double[] b, int n, int nskip) {
Matrix.dSolveLDLT(L, d, b, n, nskip);
}
/**
* Given an L*D*L' factorization of an n*n matrix A, return the updated
* factorization L2*D2*L2' of A plus the following "top left" matrix:
*
* [ b a' ] <-- b is a[0]
* [ a 0 ] <-- a is a[1..n-1]
*
*
* - L has size n*n, its leading dimension is nskip. L is lower triangular
* with ones on the diagonal. only the lower triangle of L is referenced.
* - d has size n. d contains the reciprocal diagonal elements of D.
* - a has size n.
*
* the result is written into L, except that the left column of L and d[0]
* are not actually modified. see ldltaddTL.m for further comments.
* @param L L
* @param d d
* @param a a
* @param n n
* @param nskip nskip
*/
public static void dLDLTAddTL (double[] L, double[] d, double[] a, int n, int nskip) {
Matrix.dLDLTAddTL(L, d, a, n, nskip);
}
/**
* Given an L*D*L' factorization of a permuted matrix A, produce a new
* factorization for row and column `r' removed.
*
* - A has size n1*n1, its leading dimension in nskip. A is symmetric and
* positive definite. only the lower triangle of A is referenced.
* A itself may actually be an array of row pointers.
* - L has size n2*n2, its leading dimension in nskip. L is lower triangular
* with ones on the diagonal. only the lower triangle of L is referenced.
* - d has size n2. d contains the reciprocal diagonal elements of D.
* - p is a permutation vector. it contains n2 indexes into A. each index
* must be in the range 0..n1-1.
* - r is the row/column of L to remove.
*
* the new L will be written within the old L, i.e. will have the same leading
* dimension. the last row and column of L, and the last element of d, are
* undefined on exit.
*
* a fast O(n^2) algorithm is used. see ldltremove.m for further comments.
* @param A A
* @param p p
* @param L L
* @param d d
* @param n1 n1
* @param n2 n2
* @param r r
* @param nskip nskip
*/
public static void dLDLTRemove (double[] A, int[] p, double[] L, double[] d,
int n1, int n2, int r, int nskip) {
Matrix.dLDLTRemove(A, p, L, d, n1, n2, r, nskip);
}
/**
* Given an n*n matrix A (with leading dimension nskip), remove the r'th row
* and column by moving elements. the new matrix will have the same leading
* dimension. the last row and column of A are untouched on exit.
* @param A A
* @param n n
* @param nskip nskip
* @param r r
*/
public static void dRemoveRowCol (double[] A, int n, int nskip, int r) {
Matrix.dRemoveRowCol(A, n, nskip, r);
}
protected DMatrix() {}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy