
org.ojalgo.random.process.AbstractProcess Maven / Gradle / Ivy
/*
* Copyright 1997-2015 Optimatika (www.optimatika.se)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
package org.ojalgo.random.process;
import static org.ojalgo.constant.PrimitiveMath.*;
import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
import java.util.TreeSet;
import org.ojalgo.array.Array2D;
import org.ojalgo.random.ContinuousDistribution;
import org.ojalgo.random.Distribution;
import org.ojalgo.type.keyvalue.ComparableToDouble;
abstract class AbstractProcess implements RandomProcess {
private final TreeSet> myObservations = new TreeSet>();
protected AbstractProcess() {
super();
}
public final boolean addObservation(final Double x, final double y) {
return myObservations.add(new ComparableToDouble(x, y));
}
/**
* Equivalent to calling {@link #getDistribution(double)} with argumant 1.0
, and then
* {@link Distribution#getExpected()}.
*/
public final double getExpected() {
return this.getExpected(ONE);
}
/**
* The same thing can be achieved by first calling {@link #getDistribution(double)} with argumant
* 1.0
, and then {@link ContinuousDistribution#getQuantile(double)} (but with different input
* argument).
*/
public final double getLowerConfidenceQuantile(final double aConfidence) {
return this.getLowerConfidenceQuantile(ONE, aConfidence);
}
/**
* Equivalent to calling {@link #getDistribution(double)} with argumant 1.0
, and then
* {@link Distribution#getStandardDeviation()}.
*/
public final double getStandardDeviation() {
return this.getStandardDeviation(ONE);
}
/**
* The same thing can be achieved by first calling {@link #getDistribution(double)} with argumant
* 1.0
, and then {@link ContinuousDistribution#getQuantile(double)} (but with different input
* argument).
*/
public final double getUpperConfidenceQuantile(final double aConfidence) {
return this.getUpperConfidenceQuantile(ONE, aConfidence);
}
public final double getValue() {
return myObservations.last().value;
}
/**
* Equivalent to calling {@link #getDistribution(double)} with argumant 1.0
, and then
* {@link Distribution#getVariance()}.
*/
public final double getVariance() {
return this.getVariance(ONE);
}
public final void setValue(final double newValue) {
if (myObservations.size() <= 0) {
myObservations.add(new ComparableToDouble(ZERO, newValue));
} else {
myObservations.add(new ComparableToDouble(myObservations.pollLast().key, newValue));
}
}
/**
* @return An array of sample sets. The array has aNumberOfSteps elements, and each sample set has
* aNumberOfRealisations samples.
*/
public final RandomProcess.SimulationResults simulate(final int numberOfRealisations, final int numberOfSteps, final double stepSize) {
final List> tmpInitialState = new ArrayList>(myObservations);
final double tmpInitialValue = this.getValue();
final Array2D tmpRealisationValues = Array2D.PRIMITIVE.makeZero(numberOfRealisations, numberOfSteps);
for (int r = 0; r < numberOfRealisations; r++) {
double tmpCurrentValue = tmpInitialValue;
for (int s = 0; s < numberOfSteps; s++) {
tmpCurrentValue = this.step(tmpCurrentValue, stepSize, this.getNormalisedRandomIncrement());
tmpRealisationValues.set(r, s, tmpCurrentValue);
}
this.setObservations(tmpInitialState);
}
return new RandomProcess.SimulationResults(tmpInitialValue, tmpRealisationValues);
}
protected abstract double getNormalisedRandomIncrement();
protected final void setObservations(final Collection extends ComparableToDouble> c) {
myObservations.clear();
myObservations.addAll(c);
}
protected abstract double step(double currentValue, final double stepSize, final double normalisedRandomIncrement);
abstract double getExpected(double aStepSize);
abstract double getLowerConfidenceQuantile(double aStepSize, final double aConfidence);
final TreeSet> getObservations() {
return myObservations;
}
abstract double getStandardDeviation(double aStepSize);
abstract double getUpperConfidenceQuantile(double aStepSize, final double aConfidence);
abstract double getVariance(double aStepSize);
final double step(final double stepSize) {
return this.step(this.getValue(), stepSize, this.getNormalisedRandomIncrement());
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy