org.ojalgo.optimisation.convex.IterativeASS Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ojalgo Show documentation
Show all versions of ojalgo Show documentation
oj! Algorithms - ojAlgo - is Open Source Java code that has to do with mathematics, linear algebra and optimisation.
/*
* Copyright 1997-2020 Optimatika
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
package org.ojalgo.optimisation.convex;
import static org.ojalgo.function.constant.PrimitiveMath.*;
import java.util.Arrays;
import org.ojalgo.array.SparseArray;
import org.ojalgo.equation.Equation;
import org.ojalgo.matrix.store.ElementsSupplier;
import org.ojalgo.matrix.store.MatrixStore;
import org.ojalgo.matrix.store.PhysicalStore;
import org.ojalgo.matrix.store.Primitive64Store;
import org.ojalgo.matrix.task.iterative.ConjugateGradientSolver;
import org.ojalgo.matrix.task.iterative.MutableSolver;
import org.ojalgo.optimisation.Optimisation;
import org.ojalgo.scalar.PrimitiveScalar;
import org.ojalgo.structure.Access1D;
import org.ojalgo.structure.Access2D;
import org.ojalgo.type.context.NumberContext;
/**
* Solves optimisation problems of the form:
*
* min 1/2 [X]T[Q][X] - [C]T[X]
* when [AE][X] == [BE]
* and [AI][X] <= [BI]
*
* Where [AE] and [BE] are optinal.
*
* @author apete
*/
final class IterativeASS extends ActiveSetSolver {
final class MyIterativeSolver extends MutableSolver implements Access2D {
private final PhysicalStore myColumnE;
private final int myCountE = IterativeASS.this.countEqualityConstraints();
private final int myFullDim = myCountE + IterativeASS.this.countInequalityConstraints();
private final Equation[] myIterationRows;
MyIterativeSolver() {
super(new ConjugateGradientSolver(), IterativeASS.this.countEqualityConstraints() + IterativeASS.this.countInequalityConstraints());
// GaussSeidel
//this.setTerminationContext(NumberContext.getMath(MathContext.DECIMAL64).newPrecision(13));
//this.getDelegate().setRelaxationFactor(1.5);
// ConjugateGradient
this.setAccuracyContext(ITERATIVE_ACCURACY);
this.setIterationsLimit(myFullDim + myFullDim);
// this.setDebugPrinter(BasicLogger.DEBUG);
myIterationRows = new Equation[myFullDim];
myColumnE = Primitive64Store.FACTORY.make(myCountE, 1);
}
@Override
public long countColumns() {
return IterativeASS.this.countEqualityConstraints() + IterativeASS.this.countIncluded();
}
@Override
public long countRows() {
return IterativeASS.this.countEqualityConstraints() + IterativeASS.this.countIncluded();
}
public double doubleValue(final long row, final long col) {
int tmpColumn = (int) col;
if (tmpColumn >= myCountE) {
tmpColumn = myCountE + IterativeASS.this.getIncluded()[tmpColumn - myCountE];
}
return this.doubleValue((int) row, tmpColumn);
}
public Double get(final long row, final long col) {
return this.doubleValue(row, col);
}
void add(final int j, final Access1D column, final double rhs, final int numberOfNonzeros) {
final int[] myIncluded = IterativeASS.this.getIncluded();
final Equation tmpNewRow = new Equation(j, myFullDim, rhs, numberOfNonzeros);
myIterationRows[j] = tmpNewRow;
this.add(tmpNewRow);
if (myCountE > 0) {
IterativeASS.this.getMatrixAE().multiply(column, myColumnE);
for (int i = 0; i < myCountE; i++) {
final double tmpVal = myColumnE.doubleValue(i);
if (!PrimitiveScalar.isSmall(ONE, tmpVal)) {
final Equation tmpRowE = myIterationRows[i];
if (tmpRowE != null) {
tmpRowE.set(j, tmpVal);
}
tmpNewRow.set(i, tmpVal);
}
}
}
if (IterativeASS.this.countIncluded() > 0) {
// final PhysicalStore tmpProdI = PrimitiveDenseStore.FACTORY.makeZero(myIncluded.length, 1L);
// IterativeASS.this.getMatrixAI(myIncluded).get().multiply(column, tmpProdI);
for (int _i = 0; _i < myIncluded.length; _i++) {
// final double tmpVal = tmpProdI.doubleValue(_i);
final double tmpVal = IterativeASS.this.getMatrixAI(myIncluded[_i]).dot(column);
if (!PrimitiveScalar.isSmall(ONE, tmpVal)) {
final int i = myCountE + myIncluded[_i];
final Equation tmpRowI = myIterationRows[i];
if (tmpRowI != null) {
tmpRowI.set(j, tmpVal);
}
tmpNewRow.set(i, tmpVal);
}
}
}
tmpNewRow.initialise(IterativeASS.this.getSolutionL());
}
void remove(final int i) {
final Equation tmpO = myIterationRows[i];
if (tmpO != null) {
this.remove(tmpO);
}
myIterationRows[i] = null;
IterativeASS.this.getSolutionL().set(i, ZERO);
}
}
static final NumberContext ITERATIVE_ACCURACY = ACCURACY.withPrecision(10);
private final PhysicalStore myColumnS;
private final MyIterativeSolver myS;
IterativeASS(final ConvexSolver.Builder matrices, final Optimisation.Options solverOptions) {
super(matrices, solverOptions);
myS = new MyIterativeSolver();
myColumnS = Primitive64Store.FACTORY.make(this.countVariables(), 1);
}
private void addConstraint(final int constrIndex, final Access1D> constrBody, final double constrRHS) {
final MatrixStore body = this.getSolutionQ(Access2D.newPrimitiveColumnCollectable(constrBody), myColumnS);
final double rhs = constrBody.dot(this.getInvQC()) - constrRHS;
myS.add(constrIndex, body, rhs, 3);
}
@Override
protected void exclude(final int toExclude) {
super.exclude(toExclude);
myS.remove(this.countEqualityConstraints() + toExclude);
}
@Override
protected void performIteration() {
if (this.isLogProgress()) {
this.log("\nPerformIteration {}", 1 + this.countIterations());
this.log(this.toActivatorString());
}
final int toInclude = this.getConstraintToInclude();
this.setConstraintToInclude(-1);
final int[] incl = this.getIncluded();
final int[] excl = this.getExcluded();
boolean solved = false;
if (toInclude >= 0) {
final int constrIndex = this.countEqualityConstraints() + toInclude;
final SparseArray constrBody = this.getMatrixAI(toInclude);
final double constrRHS = this.getMatrixBI(toInclude);
this.addConstraint(constrIndex, constrBody, constrRHS);
}
final Primitive64Store iterX = this.getIterationX();
if ((this.countIterationConstraints() <= this.countVariables()) && (solved = this.isSolvableQ())) {
// Q is SPD
if (this.countIterationConstraints() == 0L) {
// Unconstrained - can happen when there are no equality constraints and all inequalities are inactive
iterX.fillMatching(this.getInvQC());
} else {
// Actual/normal optimisation problem
final double relativeError = myS.resolve(this.getSolutionL());
if (this.isLogDebug()) {
this.log("RHS={}", myS.getRHS());
this.log("Relative error {} in solution for L={}", relativeError, Arrays.toString(this.getIterationL(incl).toRawCopy1D()));
}
if (solved = ACCURACY.isZero(relativeError)) {
ElementsSupplier rhs = this.getIterationL(incl).premultiply(this.getIterationA().transpose())
.operateOnMatching(this.getIterationC(), SUBTRACT);
this.getSolutionQ(rhs, iterX);
}
}
}
if (!solved) {
// The above failed, try solving the full KKT system instaed
final Primitive64Store tmpXL = Primitive64Store.FACTORY.make(this.countVariables() + this.countIterationConstraints(), 1L);
if (solved = this.solveFullKKT(tmpXL)) {
iterX.fillMatching(tmpXL.logical().limits(this.countVariables(), 1).get());
for (int i = 0; i < this.countEqualityConstraints(); i++) {
this.getSolutionL().set(i, tmpXL.doubleValue(this.countVariables() + i));
}
final int tmpLengthIncluded = incl.length;
for (int i = 0; i < tmpLengthIncluded; i++) {
this.getSolutionL().set(this.countEqualityConstraints() + incl[i],
tmpXL.doubleValue(this.countVariables() + this.countEqualityConstraints() + i));
}
}
}
this.handleIterationResults(solved, iterX, incl, excl);
}
@Override
void resetActivator(final boolean useLagrange) {
super.resetActivator(useLagrange);
final int numbEqus = this.countEqualityConstraints();
final int numbVars = this.countVariables();
myS.clear();
final int[] incl = this.getIncluded();
if ((numbEqus + incl.length) > 0) {
final MatrixStore iterA = this.getIterationA();
final MatrixStore iterB = this.getIterationB();
final MatrixStore tmpCols = this.getSolutionQ(iterA.transpose());
final MatrixStore tmpRHS = this.getInvQC().premultiply(iterA).operateOnMatching(SUBTRACT, iterB).get();
for (int j = 0; j < numbEqus; j++) {
myS.add(j, tmpCols.sliceColumn(j), tmpRHS.doubleValue(j), numbVars);
}
for (int j = 0; j < incl.length; j++) {
myS.add(numbEqus + incl[j], tmpCols.sliceColumn(numbEqus + j), tmpRHS.doubleValue(numbEqus + j), 3);
}
}
}
}