All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ojalgo.optimisation.convex.IterativeASS Maven / Gradle / Ivy

Go to download

oj! Algorithms - ojAlgo - is Open Source Java code that has to do with mathematics, linear algebra and optimisation.

There is a newer version: 55.0.1
Show newest version
/*
 * Copyright 1997-2020 Optimatika
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
package org.ojalgo.optimisation.convex;

import static org.ojalgo.function.constant.PrimitiveMath.*;

import java.util.Arrays;

import org.ojalgo.array.SparseArray;
import org.ojalgo.equation.Equation;
import org.ojalgo.matrix.store.ElementsSupplier;
import org.ojalgo.matrix.store.MatrixStore;
import org.ojalgo.matrix.store.PhysicalStore;
import org.ojalgo.matrix.store.Primitive64Store;
import org.ojalgo.matrix.task.iterative.ConjugateGradientSolver;
import org.ojalgo.matrix.task.iterative.MutableSolver;
import org.ojalgo.optimisation.Optimisation;
import org.ojalgo.scalar.PrimitiveScalar;
import org.ojalgo.structure.Access1D;
import org.ojalgo.structure.Access2D;
import org.ojalgo.type.context.NumberContext;

/**
 * Solves optimisation problems of the form:
 * 

* min 1/2 [X]T[Q][X] - [C]T[X]
* when [AE][X] == [BE]
* and [AI][X] <= [BI] *

* Where [AE] and [BE] are optinal. * * @author apete */ final class IterativeASS extends ActiveSetSolver { final class MyIterativeSolver extends MutableSolver implements Access2D { private final PhysicalStore myColumnE; private final int myCountE = IterativeASS.this.countEqualityConstraints(); private final int myFullDim = myCountE + IterativeASS.this.countInequalityConstraints(); private final Equation[] myIterationRows; MyIterativeSolver() { super(new ConjugateGradientSolver(), IterativeASS.this.countEqualityConstraints() + IterativeASS.this.countInequalityConstraints()); // GaussSeidel //this.setTerminationContext(NumberContext.getMath(MathContext.DECIMAL64).newPrecision(13)); //this.getDelegate().setRelaxationFactor(1.5); // ConjugateGradient this.setAccuracyContext(ITERATIVE_ACCURACY); this.setIterationsLimit(myFullDim + myFullDim); // this.setDebugPrinter(BasicLogger.DEBUG); myIterationRows = new Equation[myFullDim]; myColumnE = Primitive64Store.FACTORY.make(myCountE, 1); } @Override public long countColumns() { return IterativeASS.this.countEqualityConstraints() + IterativeASS.this.countIncluded(); } @Override public long countRows() { return IterativeASS.this.countEqualityConstraints() + IterativeASS.this.countIncluded(); } public double doubleValue(final long row, final long col) { int tmpColumn = (int) col; if (tmpColumn >= myCountE) { tmpColumn = myCountE + IterativeASS.this.getIncluded()[tmpColumn - myCountE]; } return this.doubleValue((int) row, tmpColumn); } public Double get(final long row, final long col) { return this.doubleValue(row, col); } void add(final int j, final Access1D column, final double rhs, final int numberOfNonzeros) { final int[] myIncluded = IterativeASS.this.getIncluded(); final Equation tmpNewRow = new Equation(j, myFullDim, rhs, numberOfNonzeros); myIterationRows[j] = tmpNewRow; this.add(tmpNewRow); if (myCountE > 0) { IterativeASS.this.getMatrixAE().multiply(column, myColumnE); for (int i = 0; i < myCountE; i++) { final double tmpVal = myColumnE.doubleValue(i); if (!PrimitiveScalar.isSmall(ONE, tmpVal)) { final Equation tmpRowE = myIterationRows[i]; if (tmpRowE != null) { tmpRowE.set(j, tmpVal); } tmpNewRow.set(i, tmpVal); } } } if (IterativeASS.this.countIncluded() > 0) { // final PhysicalStore tmpProdI = PrimitiveDenseStore.FACTORY.makeZero(myIncluded.length, 1L); // IterativeASS.this.getMatrixAI(myIncluded).get().multiply(column, tmpProdI); for (int _i = 0; _i < myIncluded.length; _i++) { // final double tmpVal = tmpProdI.doubleValue(_i); final double tmpVal = IterativeASS.this.getMatrixAI(myIncluded[_i]).dot(column); if (!PrimitiveScalar.isSmall(ONE, tmpVal)) { final int i = myCountE + myIncluded[_i]; final Equation tmpRowI = myIterationRows[i]; if (tmpRowI != null) { tmpRowI.set(j, tmpVal); } tmpNewRow.set(i, tmpVal); } } } tmpNewRow.initialise(IterativeASS.this.getSolutionL()); } void remove(final int i) { final Equation tmpO = myIterationRows[i]; if (tmpO != null) { this.remove(tmpO); } myIterationRows[i] = null; IterativeASS.this.getSolutionL().set(i, ZERO); } } static final NumberContext ITERATIVE_ACCURACY = ACCURACY.withPrecision(10); private final PhysicalStore myColumnS; private final MyIterativeSolver myS; IterativeASS(final ConvexSolver.Builder matrices, final Optimisation.Options solverOptions) { super(matrices, solverOptions); myS = new MyIterativeSolver(); myColumnS = Primitive64Store.FACTORY.make(this.countVariables(), 1); } private void addConstraint(final int constrIndex, final Access1D constrBody, final double constrRHS) { final MatrixStore body = this.getSolutionQ(Access2D.newPrimitiveColumnCollectable(constrBody), myColumnS); final double rhs = constrBody.dot(this.getInvQC()) - constrRHS; myS.add(constrIndex, body, rhs, 3); } @Override protected void exclude(final int toExclude) { super.exclude(toExclude); myS.remove(this.countEqualityConstraints() + toExclude); } @Override protected void performIteration() { if (this.isLogProgress()) { this.log("\nPerformIteration {}", 1 + this.countIterations()); this.log(this.toActivatorString()); } final int toInclude = this.getConstraintToInclude(); this.setConstraintToInclude(-1); final int[] incl = this.getIncluded(); final int[] excl = this.getExcluded(); boolean solved = false; if (toInclude >= 0) { final int constrIndex = this.countEqualityConstraints() + toInclude; final SparseArray constrBody = this.getMatrixAI(toInclude); final double constrRHS = this.getMatrixBI(toInclude); this.addConstraint(constrIndex, constrBody, constrRHS); } final Primitive64Store iterX = this.getIterationX(); if ((this.countIterationConstraints() <= this.countVariables()) && (solved = this.isSolvableQ())) { // Q is SPD if (this.countIterationConstraints() == 0L) { // Unconstrained - can happen when there are no equality constraints and all inequalities are inactive iterX.fillMatching(this.getInvQC()); } else { // Actual/normal optimisation problem final double relativeError = myS.resolve(this.getSolutionL()); if (this.isLogDebug()) { this.log("RHS={}", myS.getRHS()); this.log("Relative error {} in solution for L={}", relativeError, Arrays.toString(this.getIterationL(incl).toRawCopy1D())); } if (solved = ACCURACY.isZero(relativeError)) { ElementsSupplier rhs = this.getIterationL(incl).premultiply(this.getIterationA().transpose()) .operateOnMatching(this.getIterationC(), SUBTRACT); this.getSolutionQ(rhs, iterX); } } } if (!solved) { // The above failed, try solving the full KKT system instaed final Primitive64Store tmpXL = Primitive64Store.FACTORY.make(this.countVariables() + this.countIterationConstraints(), 1L); if (solved = this.solveFullKKT(tmpXL)) { iterX.fillMatching(tmpXL.logical().limits(this.countVariables(), 1).get()); for (int i = 0; i < this.countEqualityConstraints(); i++) { this.getSolutionL().set(i, tmpXL.doubleValue(this.countVariables() + i)); } final int tmpLengthIncluded = incl.length; for (int i = 0; i < tmpLengthIncluded; i++) { this.getSolutionL().set(this.countEqualityConstraints() + incl[i], tmpXL.doubleValue(this.countVariables() + this.countEqualityConstraints() + i)); } } } this.handleIterationResults(solved, iterX, incl, excl); } @Override void resetActivator(final boolean useLagrange) { super.resetActivator(useLagrange); final int numbEqus = this.countEqualityConstraints(); final int numbVars = this.countVariables(); myS.clear(); final int[] incl = this.getIncluded(); if ((numbEqus + incl.length) > 0) { final MatrixStore iterA = this.getIterationA(); final MatrixStore iterB = this.getIterationB(); final MatrixStore tmpCols = this.getSolutionQ(iterA.transpose()); final MatrixStore tmpRHS = this.getInvQC().premultiply(iterA).operateOnMatching(SUBTRACT, iterB).get(); for (int j = 0; j < numbEqus; j++) { myS.add(j, tmpCols.sliceColumn(j), tmpRHS.doubleValue(j), numbVars); } for (int j = 0; j < incl.length; j++) { myS.add(numbEqus + incl[j], tmpCols.sliceColumn(numbEqus + j), tmpRHS.doubleValue(numbEqus + j), 3); } } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy