org.ojalgo.optimisation.linear.DualSimplex Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ojalgo Show documentation
Show all versions of ojalgo Show documentation
oj! Algorithms - ojAlgo - is Open Source Java code that has to do with mathematics, linear algebra and optimisation.
/*
* Copyright 1997-2020 Optimatika
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
package org.ojalgo.optimisation.linear;
import static org.ojalgo.function.constant.PrimitiveMath.*;
import org.ojalgo.matrix.store.MatrixStore;
import org.ojalgo.matrix.store.RowsSupplier;
import org.ojalgo.optimisation.Optimisation;
import org.ojalgo.optimisation.convex.ConvexSolver;
import org.ojalgo.structure.Access1D;
import org.ojalgo.structure.ElementView1D;
import org.ojalgo.structure.Mutate1D;
import org.ojalgo.structure.Mutate2D;
import org.ojalgo.structure.RowView;
import org.ojalgo.type.context.NumberContext;
final class DualSimplex extends SimplexSolver {
public static Optimisation.Result solve(final ConvexSolver.Builder convex, final Optimisation.Options options) {
SimplexTableau tableau = DualSimplex.build(convex, options);
DualSimplex solver = new DualSimplex(tableau, options);
Result result = solver.solve();
Optimisation.Result retVal = DualSimplex.toConvexState(result, convex);
return retVal;
}
static SimplexTableau build(final ConvexSolver.Builder convex, final Optimisation.Options options) {
int numbVars = convex.countVariables();
int numbEqus = convex.countEqualityConstraints();
int numbInes = convex.countInequalityConstraints();
SimplexTableau retVal = SimplexTableau.make(numbVars, numbEqus + numbEqus + numbInes, 0, options);
Mutate1D obj = retVal.objective();
Mutate2D constrBody = retVal.constraintsBody();
Mutate1D constrRHS = retVal.constraintsRHS();
MatrixStore convexC = convex.getC();
MatrixStore convexAE = convex.getAE();
MatrixStore convexBE = convex.getBE();
RowsSupplier convexAI = convex.getAI();
MatrixStore convexBI = convex.getBI();
for (int i = 0; i < numbVars; i++) {
double rhs = convexC.doubleValue(i);
boolean neg = retVal.negative[i] = NumberContext.compare(rhs, ZERO) < 0;
for (int j = 0; j < numbEqus; j++) {
double valE = convexAE.doubleValue(j, i);
constrBody.set(i, j, neg ? -valE : valE);
constrBody.set(i, numbEqus + j, neg ? valE : -valE);
}
constrRHS.set(i, neg ? -rhs : rhs);
}
for (RowView rowV : convexAI.rows()) {
long tabJ = rowV.row();
for (ElementView1D elemV : rowV.nonzeros()) {
int tabI = Math.toIntExact(elemV.index());
double tabVal = elemV.doubleValue();
constrBody.set(tabI, numbEqus + numbEqus + tabJ, retVal.negative[tabI] ? -tabVal : tabVal);
}
}
for (int j = 0; j < numbEqus; j++) {
obj.set(j, convexBE.doubleValue(j));
obj.set(numbEqus + j, -convexBE.doubleValue(j));
}
for (int j = 0; j < numbInes; j++) {
obj.set(numbEqus + numbEqus + j, convexBI.doubleValue(j));
}
// BasicLogger.debug("Dual", retVal);
// BasicLogger.debug("Negs (dual): {}", Arrays.toString(retVal.negative));
return retVal;
}
static Optimisation.Result toConvexState(final Result result, final ConvexSolver.Builder convex) {
int numbEqus = convex.countEqualityConstraints();
int numbInes = convex.countInequalityConstraints();
Access1D> multipliers = result.getMultipliers().get();
Optimisation.Result retVal = new Optimisation.Result(result.getState(), result.getValue(), result);
retVal.multipliers(new Access1D() {
public long count() {
return numbEqus + numbInes;
}
public double doubleValue(final long index) {
if (index < numbEqus) {
return -(multipliers.doubleValue(index) - multipliers.doubleValue(numbEqus + index));
} else {
return -multipliers.doubleValue(numbEqus + index);
}
}
public Double get(final long index) {
return this.doubleValue(index);
}
@Override
public String toString() {
return Access1D.toString(this);
}
});
return retVal;
}
DualSimplex(final SimplexTableau tableau, final Options solverOptions) {
super(tableau, solverOptions);
}
@Override
protected Access1D> extractMultipliers() {
return super.extractSolution();
}
@Override
protected Access1D> extractSolution() {
return super.extractMultipliers();
}
@Override
protected State getState() {
State state = super.getState();
if (state == State.UNBOUNDED) {
return State.INFEASIBLE;
} else if (!state.isFeasible()) {
return State.UNBOUNDED;
} else {
return state;
}
}
}