org.ojalgo.random.ChiSquareDistribution Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ojalgo Show documentation
Show all versions of ojalgo Show documentation
oj! Algorithms - ojAlgo - is Open Source Java code that has to do with mathematics, linear algebra and optimisation.
/*
* Copyright 1997-2020 Optimatika
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
package org.ojalgo.random;
import static org.ojalgo.function.constant.PrimitiveMath.*;
import org.ojalgo.function.special.GammaFunction;
import org.ojalgo.function.special.MissingMath;
public class ChiSquareDistribution extends AbstractContinuous {
static final class Degree2 extends ChiSquareDistribution {
Degree2() {
super(TWO);
}
@Override
public double getDistribution(final double value) {
return -Math.expm1(-value / TWO);
}
@Override
double calculateDensity(final double value) {
return Math.exp(-value / TWO) / TWO;
}
}
static final class NormalApproximation extends ChiSquareDistribution {
private final Normal myApproximation;
NormalApproximation(final double degreesOfFreedom) {
super(degreesOfFreedom);
myApproximation = new Normal(degreesOfFreedom, Math.sqrt(TWO * degreesOfFreedom));
}
@Override
public double getDistribution(final double value) {
return myApproximation.getDistribution(value);
}
@Override
public double getExpected() {
return myApproximation.getExpected();
}
@Override
public double getQuantile(final double probability) {
return myApproximation.getQuantile(probability);
}
@Override
public double getStandardDeviation() {
return myApproximation.getStandardDeviation();
}
@Override
public double getVariance() {
return myApproximation.getVariance();
}
@Override
double calculateDensity(final double value) {
return myApproximation.getDensity(value);
}
}
private static final double _0_0001 = 0.0001;
static final Normal NORMAL = new Normal();
public static ChiSquareDistribution of(final int degreesOfFreedom) {
if (degreesOfFreedom == 2) {
return new Degree2();
} else if (degreesOfFreedom > 50) {
return new NormalApproximation(degreesOfFreedom);
} else {
return new ChiSquareDistribution(degreesOfFreedom);
}
}
private final double myDegreesOfFreedom;
ChiSquareDistribution(final double degreesOfFreedom) {
super();
myDegreesOfFreedom = degreesOfFreedom;
}
@Override
public final double getDensity(final double value) {
if (value <= ZERO) {
return ZERO;
} else {
return this.calculateDensity(value);
}
}
public double getDistribution(final double value) {
return GammaFunction.Regularized.lower(myDegreesOfFreedom / TWO, value / TWO);
}
public double getExpected() {
return myDegreesOfFreedom;
}
public double getQuantile(final double probability) {
double retVal = this.approximateQuantile(probability);
if (Double.isInfinite(retVal)) {
return retVal;
}
double reverse = this.getDistribution(retVal);
double lower = retVal, higher = retVal;
if ((probability - reverse) > _0_0001) {
do {
higher *= TWO;
} while (this.getDistribution(higher) <= probability);
} else if ((reverse - probability) > _0_0001) {
do {
lower /= TWO;
} while (this.getDistribution(lower) >= probability);
} else {
return retVal;
}
do {
retVal = (lower + higher) / TWO;
reverse = this.getDistribution(retVal);
if (reverse < probability) {
lower = retVal;
} else if (reverse > probability) {
higher = retVal;
}
} while (Math.abs(reverse - probability) >= _0_0001);
return retVal;
}
@Override
public double getVariance() {
return TWO * myDegreesOfFreedom;
}
private double approximateQuantile(final double probability) {
return MissingMath.power(NORMAL.getQuantile(probability) + Math.sqrt((TWO * myDegreesOfFreedom) - ONE), 2) / TWO;
}
double calculateDensity(final double value) {
double halfFreedom = myDegreesOfFreedom / TWO;
return (Math.pow(value, halfFreedom - ONE) * Math.exp(-value / TWO)) / (Math.pow(TWO, halfFreedom) * GammaFunction.gamma(halfFreedom));
}
}