![JAR search and dependency download from the Maven repository](/logo.png)
org.ojalgo.optimisation.convex.ActiveSetSolver Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ojalgo Show documentation
Show all versions of ojalgo Show documentation
oj! Algorithms - ojAlgo - is Open Source Java code that has to do with mathematics, linear algebra and optimisation.
/*
* Copyright 1997-2021 Optimatika
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
package org.ojalgo.optimisation.convex;
import static org.ojalgo.function.constant.PrimitiveMath.*;
import org.ojalgo.array.SparseArray;
import org.ojalgo.function.aggregator.Aggregator;
import org.ojalgo.function.aggregator.AggregatorFunction;
import org.ojalgo.function.aggregator.PrimitiveAggregator;
import org.ojalgo.matrix.store.MatrixStore;
import org.ojalgo.matrix.store.PhysicalStore;
import org.ojalgo.matrix.store.Primitive64Store;
import org.ojalgo.optimisation.GenericSolver;
import org.ojalgo.type.IndexSelector;
abstract class ActiveSetSolver extends ConstrainedSolver {
private static final String NEGATIVE_I_SLACK = "Negative I-slack! {}";
private static final String NONZERO_E_SLACK = "Nonzero E-slack! {}";
private final IndexSelector myActivator;
private int myConstraintToInclude = -1;
private MatrixStore myInvQC;
private final Primitive64Store myIterationX;
private boolean myShrinkSwitch = true;
private final Primitive64Store mySlackI;
ActiveSetSolver(final ConvexSolver.Builder matrices, final Options solverOptions) {
super(matrices, solverOptions);
int numberOfVariables = this.countVariables();
int numberOfEqualityConstraints = this.countEqualityConstraints();
int numberOfInequalityConstraints = this.countInequalityConstraints();
myActivator = new IndexSelector(numberOfInequalityConstraints);
myIterationX = Primitive64Store.FACTORY.make(numberOfVariables, 1L);
mySlackI = Primitive64Store.FACTORY.make(numberOfInequalityConstraints, 1L);
}
private void handleIterationSolution(final Primitive64Store iterX, final int[] excluded) {
// Subproblem solved successfully
final PhysicalStore soluX = this.getSolutionX();
iterX.modifyMatching(SUBTRACT, soluX);
final double normCurrentX = soluX.aggregateAll(Aggregator.LARGEST);
final double normStepX = iterX.aggregateAll(Aggregator.LARGEST);
if (this.isLogDebug()) {
this.log("Current: {} - {}", normCurrentX, soluX.asList());
this.log("Step: {} - {}", normStepX, iterX.asList());
}
if (this.isLogDebug() && options.validate) {
final PhysicalStore includedChange = this.getMatrixAI(this.getIncluded()).get().multiply(iterX).copy();
if (includedChange.count() > 0) {
this.log("Included-change: {}", includedChange.asList());
double introducedError = includedChange.aggregateAll(Aggregator.LARGEST);
if (!options.feasibility.isZero(introducedError)) {
this.log("Nonzero Included-change! {}", introducedError);
}
}
}
if (!options.solution.isSmall(normCurrentX, normStepX) && !ACCURACY.isSmall(normStepX, Math.max(normCurrentX, ONE))) {
// Non-zero && non-freak solution
double stepLength = ONE;
if (excluded.length > 0) {
final MatrixStore slack = this.getSlackI(excluded);
if (this.isLogDebug()) {
final MatrixStore change = this.getMatrixAI(excluded).get().multiply(iterX);
if (slack.count() != change.count()) {
throw new IllegalStateException();
}
final PhysicalStore steps = slack.copy();
steps.modifyMatching(DIVIDE, change);
this.log("Numer/slack: {}", slack.toRawCopy1D());
this.log("Denom/chang: {}", change.toRawCopy1D());
this.log("Looking for the largest possible step length (smallest positive scalar) among these: {}).", steps.toRawCopy1D());
}
for (int i = 0; i < excluded.length; i++) {
final SparseArray excludedInequalityRow = this.getMatrixAI(excluded[i]);
final double currentSlack = slack.doubleValue(i);
final double slackChange = excludedInequalityRow.dot(iterX);
final double fraction = Math.signum(currentSlack) == Math.signum(slackChange) && GenericSolver.ACCURACY.isSmall(slackChange, currentSlack)
? ZERO
: Math.abs(currentSlack) / slackChange;
// If the current slack is negative something has already gone wrong.
// Taking the abs value is to handle small negative values due to rounding errors
if (slackChange <= ZERO || GenericSolver.ACCURACY.isSmall(normStepX, slackChange)) {
// This constraint not affected
} else if (fraction >= ZERO) {
// Must check the step length
if (fraction < stepLength) {
stepLength = fraction;
this.setConstraintToInclude(excluded[i]);
if (this.isLogDebug()) {
this.log("Best so far: {} @ {} ({}).", stepLength, i, excluded[i]);
}
}
}
}
}
if (GenericSolver.ACCURACY.isZero(stepLength) && this.getConstraintToInclude() == this.getLastExcluded()) {
if (this.isLogProgress()) {
this.log("Break cycle on redundant constraints because step length {} on constraint {}", stepLength, this.getConstraintToInclude());
}
this.setConstraintToInclude(-1);
} else if (stepLength > ZERO) {
if (this.isLogProgress()) {
this.log("Performing update with step length {} adding constraint {}", stepLength, this.getConstraintToInclude());
}
iterX.axpy(stepLength, soluX);
} else if (this.isLogProgress()) {
this.log("Do nothing because step length {} and size {} but add constraint {}", stepLength, normStepX, this.getConstraintToInclude());
}
} else {
// Zero solution
if (this.isLogDebug()) {
this.log("Step too small (or freaky large)!");
}
this.setState(State.FEASIBLE);
}
if (this.isLogDebug()) {
this.log("Post iteration");
this.log("\tSolution: {}", soluX.asList());
this.log("\tL: {}", this.getSolutionL().asList());
}
if (this.isLogDebug() || options.validate) {
this.checkFeasibility();
}
}
private final void shrink() {
int toExclude = this.suggestConstraintToExclude();
if (toExclude < 0) {
if (myShrinkSwitch) {
toExclude = this.suggestUsingLagrangeMagnitude();
} else {
toExclude = this.suggestUsingVectorProjection();
}
myShrinkSwitch = !myShrinkSwitch;
}
if (this.isLogDebug()) {
this.log("Will remove {}", toExclude);
}
this.exclude(toExclude);
}
private final int suggestUsingLagrangeMagnitude() {
final int[] incl = myActivator.getIncluded();
final Primitive64Store soluL = this.getSolutionL();
final int numbEqus = this.countEqualityConstraints();
int toExclude = incl[0];
double maxWeight = ZERO;
for (int i = 0; i < incl.length; i++) {
final double value = soluL.doubleValue(numbEqus + incl[i]);
final double weight = ABS.invoke(value) * MAX.invoke(-value, ONE);
if (weight > maxWeight) {
maxWeight = weight;
toExclude = incl[i];
}
}
return toExclude;
}
private final int suggestUsingVectorProjection() {
final int[] incl = myActivator.getIncluded();
int lastIncluded = myActivator.getLastIncluded();
AggregatorFunction aggregator = PrimitiveAggregator.getSet().norm2();
SparseArray lastRow = this.getMatrixAI(lastIncluded);
lastRow.visitAll(aggregator);
double lastNorm = aggregator.doubleValue();
int toExclude = lastIncluded;
double maxWeight = ZERO;
// The weight is the absolute value of the cosine of the angle between the vectors (the constraint rows).
for (int i = 0; i < incl.length; i++) {
aggregator.reset();
SparseArray inclRow = this.getMatrixAI(incl[i]);
inclRow.visitAll(aggregator);
double inclNorm = aggregator.doubleValue();
final double weight = Math.abs(lastRow.dot(inclRow)) / lastNorm / inclNorm;
if (weight > maxWeight) {
maxWeight = weight;
toExclude = incl[i];
}
}
return toExclude;
}
protected int countExcluded() {
return myActivator.countExcluded();
}
protected int countIncluded() {
return myActivator.countIncluded();
}
protected void exclude(final int anIndexToExclude) {
myActivator.exclude(anIndexToExclude);
}
@Override
protected MatrixStore extractSolution() {
return super.extractSolution();
}
protected int[] getExcluded() {
return myActivator.getExcluded();
}
protected int[] getIncluded() {
return myActivator.getIncluded();
}
protected int getLastExcluded() {
return myActivator.getLastExcluded();
}
protected int getLastIncluded() {
return myActivator.getLastIncluded();
}
protected void include(final int anIndexToInclude) {
myActivator.include(anIndexToInclude);
}
@Override
protected final boolean initialise(final Result kickStarter) {
boolean ok = super.initialise(kickStarter);
myInvQC = this.getSolutionQ(this.getIterationC());
boolean feasible = false;
boolean usableKickStarter = kickStarter != null && kickStarter.getState().isApproximate();
if (usableKickStarter) {
this.getSolutionX().fillMatching(kickStarter);
if (kickStarter.getState().isFeasible()) {
feasible = true;
} else {
feasible = this.checkFeasibility();
}
}
if (!feasible) {
Result resultLP = this.solveLP();
if (feasible = resultLP.getState().isFeasible()) {
this.getSolutionX().fillMatching(resultLP);
this.getSolutionL().fillAll(ZERO);
}
}
if (feasible) {
this.setState(State.FEASIBLE);
this.resetActivator();
} else {
this.setState(State.INFEASIBLE);
this.getSolutionX().fillAll(ZERO);
}
if (this.isLogDebug()) {
this.log("Initial solution: {}", this.getSolutionX().copy().asList());
this.checkFeasibility();
}
return ok && this.getState().isFeasible();
}
@Override
protected final boolean needsAnotherIteration() {
if (this.isLogDebug()) {
this.log("\nNeedsAnotherIteration?");
}
int toInclude = -1;
int toExclude = -1;
if ((toInclude = this.suggestConstraintToInclude()) >= 0) {
if (this.isLogDebug()) {
this.log("Suggested to include: {}", toInclude);
}
myActivator.include(toInclude);
return true;
}
if ((toExclude = this.suggestConstraintToExclude()) >= 0) {
if (this.isLogDebug()) {
this.log("Suggested to exclude: {}", toExclude);
}
this.exclude(toExclude);
return true;
}
if (this.isLogDebug()) {
this.log("Stop!");
}
this.setState(State.OPTIMAL);
return false;
}
/**
* Find the minimum (largest negative) lagrange multiplier - for the active inequalities - to potentially
* deactivate.
*/
protected int suggestConstraintToExclude() {
int retVal = -1;
final int[] tmpIncluded = myActivator.getIncluded();
final int tmpLastIncluded = myActivator.getLastIncluded();
int tmpIndexOfLast = -1;
double tmpMin = POSITIVE_INFINITY;
double tmpVal;
// final MatrixStore tmpLI = this.getLI(tmpIncluded);
final MatrixStore tmpLI = this.getSolutionL().logical().offsets(this.countEqualityConstraints(), 0).row(tmpIncluded).get();
if (this.isLogDebug() && tmpLI.count() > 0L) {
this.log("Looking for the largest negative lagrange multiplier among these: {}.", tmpLI.copy().asList());
}
for (int i = 0; i < tmpLI.countRows(); i++) {
if (tmpIncluded[i] != tmpLastIncluded) {
tmpVal = tmpLI.doubleValue(i, 0);
if (tmpVal < ZERO && tmpVal < tmpMin && !GenericSolver.ACCURACY.isZero(tmpVal)) {
tmpMin = tmpVal;
retVal = i;
if (this.isLogDebug()) {
this.log("Best so far: {} @ {} ({}).", tmpMin, retVal, tmpIncluded[i]);
}
}
} else {
tmpIndexOfLast = i;
}
}
if (retVal < 0 && tmpIndexOfLast >= 0) {
tmpVal = tmpLI.doubleValue(tmpIndexOfLast, 0);
if (tmpVal < ZERO && tmpVal < tmpMin && !GenericSolver.ACCURACY.isZero(tmpVal)) {
tmpMin = tmpVal;
retVal = tmpIndexOfLast;
if (this.isLogProgress()) {
this.log("Only the last included needs to be excluded: {} @ {} ({}).", tmpMin, retVal, tmpIncluded[retVal]);
}
}
}
if (this.isLogProgress()) {
if (retVal < 0) {
this.log("Nothing to exclude");
} else {
this.log("Suggest to exclude: {} @ {} ({}).", tmpMin, retVal, tmpIncluded[retVal]);
}
}
return retVal >= 0 ? tmpIncluded[retVal] : retVal;
}
/**
* Find minimum (largest negative) slack - for the inactive inequalities - to potentially activate.
* Negative slack means the constraint is violated. Need to make sure it is enforced by activating it.
*/
protected int suggestConstraintToInclude() {
return this.getConstraintToInclude();
}
protected String toActivatorString() {
return myActivator.toString();
}
boolean checkFeasibility() {
boolean retVal = true;
PhysicalStore slackE = this.getSlackE();
PhysicalStore slackI = this.getSlackI();
if (retVal && slackE.count() > 0) {
if (this.isLogDebug()) {
this.log("E-slack: {}", slackE.asList());
}
double largestE = slackE.aggregateAll(Aggregator.LARGEST);
if (!options.feasibility.isZero(largestE)) {
retVal = false;
if (this.isLogDebug()) {
this.log(NONZERO_E_SLACK, largestE);
}
}
}
if (retVal && slackI.count() > 0) {
if (this.isLogDebug()) {
this.log("I-slack: {}", slackI.asList());
}
double minimumI = slackI.aggregateAll(Aggregator.MINIMUM);
if (minimumI < ZERO && !options.feasibility.isZero(minimumI)) {
retVal = false;
if (this.isLogDebug()) {
this.log(NEGATIVE_I_SLACK, minimumI);
}
}
}
return retVal;
}
@Override
final int countIterationConstraints() {
return this.countEqualityConstraints() + this.countIncluded();
}
int getConstraintToInclude() {
return myConstraintToInclude;
}
MatrixStore getInvQC() {
return myInvQC;
}
@Override
final MatrixStore getIterationA() {
final int numbEqus = this.countEqualityConstraints();
final int numbVars = this.countVariables();
final int[] incl = myActivator.getIncluded();
final PhysicalStore retVal = Primitive64Store.FACTORY.make(numbEqus + incl.length, numbVars);
if (numbEqus > 0) {
this.getMatrixAE().supplyTo(retVal.regionByLimits(numbEqus, numbVars));
}
for (int i = 0; i < incl.length; i++) {
this.getMatrixAI(incl[i]).supplyNonZerosTo(retVal.regionByRows(numbEqus + i));
}
return retVal;
}
@Override
final MatrixStore getIterationB() {
final int numbEqus = this.countEqualityConstraints();
final int[] incl = myActivator.getIncluded();
final PhysicalStore retVal = Primitive64Store.FACTORY.make(numbEqus + incl.length, 1);
for (int i = 0; i < numbEqus; i++) {
retVal.set(i, this.getMatrixBE().doubleValue(i));
}
for (int i = 0; i < incl.length; i++) {
retVal.set(numbEqus + i, this.getMatrixBI().doubleValue(incl[i]));
}
return retVal;
}
@Override
final MatrixStore getIterationC() {
// final MatrixStore tmpQ = this.getQ();
// final MatrixStore tmpC = this.getC();
//
// final PhysicalStore tmpX = this.getX();
//
// return tmpC.subtract(tmpQ.multiply(tmpX));
return this.getMatrixC();
}
Primitive64Store getIterationX() {
return myIterationX;
}
PhysicalStore getSlackI() {
MatrixStore mtrxBI = this.getMatrixBI();
PhysicalStore mtrxX = this.getSolutionX();
mySlackI.fillMatching(mtrxBI);
int nbInequalities = mtrxBI.getRowDim();
for (int i = 0; i < nbInequalities; i++) {
mySlackI.add(i, -this.getMatrixAI(i).dot(mtrxX));
}
return mySlackI;
}
MatrixStore getSlackI(final int[] rows) {
return this.getSlackI().logical().row(rows).get();
}
final void handleIterationResults(final boolean solved, final Primitive64Store iterX, final int[] included, final int[] excluded) {
this.incrementIterationsCount();
if (solved) {
this.handleIterationSolution(iterX, excluded);
} else if (this.isIterationAllowed()) {
// Assume Q solvable
// There must be a problem with the constraints
if (this.isLogProgress()) {
this.log("Constraints problem!");
}
if (included.length >= 1) {
// At least 1 active inequality
this.shrink();
this.performIteration();
} else {
// Should not be possible to end up here, infeasibility among
// the equality constraints should have been detected earlier.
this.setState(State.FAILED);
}
} else if (this.checkFeasibility()) {
// Feasible current solution
this.setState(State.FEASIBLE);
} else {
// Current solution somehow NOT feasible
this.setState(State.FAILED);
}
}
void resetActivator() {
myActivator.excludeAll();
int numbEqus = this.countEqualityConstraints();
int numbVars = this.countVariables();
int maxToInclude = numbVars - numbEqus;
if (this.isLogDebug() && numbEqus > numbVars) {
this.log("Redundant contraints!");
}
if (this.hasInequalityConstraints()) {
final MatrixStore inqSlack = this.getSlackI();
final int[] excl = this.getExcluded();
Primitive64Store lagrange = this.getSolutionL();
for (int i = 0; i < excl.length; i++) {
double slack = inqSlack.doubleValue(excl[i]);
if (ACCURACY.isZero(slack) && this.countIncluded() < maxToInclude) {
if (this.isLogDebug()) {
this.log("Will inlcude ineq {} with slack={}", i, slack);
}
this.include(excl[i]);
}
}
}
}
void setConstraintToInclude(final int constraintToInclude) {
myConstraintToInclude = constraintToInclude;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy