org.ojalgo.random.process.WienerProcess Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ojalgo Show documentation
Show all versions of ojalgo Show documentation
oj! Algorithms - ojAlgo - is Open Source Java code that has to do with mathematics, linear algebra and optimisation.
/*
* Copyright 1997-2021 Optimatika
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
package org.ojalgo.random.process;
import static org.ojalgo.function.constant.PrimitiveMath.*;
import org.ojalgo.function.constant.PrimitiveMath;
import org.ojalgo.function.special.ErrorFunction;
import org.ojalgo.random.Normal;
public final class WienerProcess extends AbstractProcess {
private static final Normal GENERATOR = new Normal();
public WienerProcess() {
super();
this.setValue(ZERO);
}
@SuppressWarnings("unused")
private WienerProcess(final double initialValue) {
super();
this.setValue(initialValue);
}
public Normal getDistribution(final double evaluationPoint) {
return new Normal(this.getValue(), PrimitiveMath.SQRT.invoke(evaluationPoint));
}
@Override
protected double getNormalisedRandomIncrement() {
return GENERATOR.doubleValue();
}
@Override
protected double step(final double currentValue, final double stepSize, final double normalisedRandomIncrement) {
final double retVal = currentValue + (PrimitiveMath.SQRT.invoke(stepSize) * normalisedRandomIncrement);
this.setValue(retVal);
return retVal;
}
@Override
double getExpected(final double stepSize) {
return this.getValue();
}
@Override
double getLowerConfidenceQuantile(final double stepSize, final double confidence) {
return this.getValue() - (PrimitiveMath.SQRT.invoke(stepSize) * SQRT_TWO * ErrorFunction.erfi(confidence));
}
@Override
double getStandardDeviation(final double stepSize) {
return PrimitiveMath.SQRT.invoke(stepSize);
}
@Override
double getUpperConfidenceQuantile(final double stepSize, final double confidence) {
return this.getValue() + (PrimitiveMath.SQRT.invoke(stepSize) * SQRT_TWO * ErrorFunction.erfi(confidence));
}
@Override
double getVariance(final double stepSize) {
return stepSize;
}
}