org.ojalgo.matrix.decomposition.Cholesky Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ojalgo Show documentation
Show all versions of ojalgo Show documentation
oj! Algorithms - ojAlgo - is Open Source Java code that has to do with mathematics, linear algebra and optimisation.
/*
* Copyright 1997-2024 Optimatika
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
package org.ojalgo.matrix.decomposition;
import org.ojalgo.array.PlainArray;
import org.ojalgo.matrix.store.MatrixStore;
import org.ojalgo.scalar.ComplexNumber;
import org.ojalgo.scalar.Quadruple;
import org.ojalgo.scalar.Quaternion;
import org.ojalgo.scalar.RationalNumber;
import org.ojalgo.structure.Access2D;
import org.ojalgo.type.context.NumberContext;
/**
*
* Cholesky: [A] = [L][L]H (or [R]H[R])
*
*
* [A]H = [A] = [L][L]H
*
*
* If [A] is symmetric and positive definite then the general LU decomposition - [P][L][D][U] - becomes
* [I][L][D][L]T (or [I][U]T[D][U]). [I] can be left out and [D] is normally split in
* halves and merged with [L] (and/or [U]). We'll express it as [A] = [L][L]T.
*
*
* A cholesky decomposition is still/also an LU decomposition where [P][L][D][U] => [L][L]T.
*
*
* @author apete
*/
public interface Cholesky> extends LDU, MatrixDecomposition.Hermitian {
interface Factory> extends MatrixDecomposition.Factory> {
}
Factory C128 = typical -> new CholeskyDecomposition.C128();
Factory R064 = typical -> {
if ((32L < typical.countColumns()) && (typical.count() <= PlainArray.MAX_SIZE)) {
return new CholeskyDecomposition.R064();
} else {
return new RawCholesky();
}
};
Factory R128 = typical -> new CholeskyDecomposition.R128();
Factory H256 = typical -> new CholeskyDecomposition.H256();
Factory Q128 = typical -> new CholeskyDecomposition.Q128();
/**
* @deprecated
*/
@Deprecated
Factory COMPLEX = C128;
/**
* @deprecated
*/
@Deprecated
Factory PRIMITIVE = R064;
/**
* @deprecated
*/
@Deprecated
Factory QUADRUPLE = R128;
/**
* @deprecated
*/
@Deprecated
Factory QUATERNION = H256;
/**
* @deprecated
*/
@Deprecated
Factory RATIONAL = Q128;
static > boolean equals(final MatrixStore matrix, final Cholesky decomposition, final NumberContext context) {
boolean retVal = false;
final MatrixStore tmpL = decomposition.getL();
return Access2D.equals(tmpL.multiply(tmpL.conjugate()), matrix, context);
}
/**
* Must implement either {@link #getL()} or {@link #getR()}.
*/
default MatrixStore getL() {
return this.getR().conjugate();
}
/**
* Must implement either {@link #getL()} or {@link #getR()}.
*/
default MatrixStore getR() {
return this.getL().conjugate();
}
/**
* To use the Cholesky decomposition rather than the LU decomposition the matrix must be symmetric and
* positive definite. It is recommended that the decomposition algorithm checks for this during
* calculation. Possibly the matrix could be assumed to be symmetric (to improve performance) but tests
* should be made to assure the matrix is positive definite.
*
* @return true if the tests did not fail.
*/
boolean isSPD();
default MatrixStore reconstruct() {
final MatrixStore mtrxL = this.getL();
return mtrxL.multiply(mtrxL.conjugate());
}
}