org.ojalgo.optimisation.convex.ConvexObjectiveFunction Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ojalgo Show documentation
Show all versions of ojalgo Show documentation
oj! Algorithms - ojAlgo - is Open Source Java code that has to do with mathematics, linear algebra and optimisation.
/*
* Copyright 1997-2024 Optimatika
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
package org.ojalgo.optimisation.convex;
import org.ojalgo.function.multiary.LinearFunction;
import org.ojalgo.function.multiary.MultiaryFunction;
import org.ojalgo.function.multiary.PureQuadraticFunction;
import org.ojalgo.matrix.store.MatrixStore;
import org.ojalgo.matrix.store.PhysicalStore;
import org.ojalgo.scalar.Scalar;
import org.ojalgo.structure.Access1D;
/**
* 1/2 [x]T[Q][x] - [l]T[x]
*
* @author apete
*/
public final class ConvexObjectiveFunction> implements MultiaryFunction.TwiceDifferentiable, MultiaryFunction.Quadratic {
private final LinearFunction myLinear;
private final PureQuadraticFunction myPureQuadratic;
private final Scalar.Factory myScalarFactory;
ConvexObjectiveFunction(final PhysicalStore.Factory factory, final int nbVars) {
this(factory.make(nbVars, nbVars), factory.make(nbVars, 1));
}
ConvexObjectiveFunction(final PhysicalStore quadratic, final PhysicalStore linear) {
super();
myScalarFactory = quadratic.physical().scalar();
myPureQuadratic = PureQuadraticFunction.wrap(quadratic);
myLinear = LinearFunction.wrap(linear);
if (myPureQuadratic.arity() != myLinear.arity()) {
throw new IllegalArgumentException("Must have the same arity!");
}
}
public int arity() {
return myLinear.arity();
}
public N getConstant() {
return myPureQuadratic.getConstant();
}
public MatrixStore getGradient(final Access1D point) {
return myPureQuadratic.getGradient(point).subtract(myLinear.getGradient(point));
}
public MatrixStore getHessian(final Access1D point) {
return myPureQuadratic.getHessian(point);
}
public MatrixStore getLinearFactors(final boolean negated) {
return myLinear.getLinearFactors(!negated);
}
@Override
public N invoke(final Access1D arg) {
Scalar zero = myScalarFactory.zero();
Scalar one = myScalarFactory.one();
Scalar two = one.add(one);
Scalar retVal = zero.add(myPureQuadratic.invoke(arg)).divide(two);
retVal = retVal.subtract(myLinear.invoke(arg));
retVal.add(this.getConstant());
return retVal.get();
}
public PhysicalStore linear() {
return myLinear.linear();
}
public PhysicalStore quadratic() {
return myPureQuadratic.quadratic();
}
public void setConstant(final Comparable> constant) {
myPureQuadratic.setConstant(constant);
}
}