org.ojalgo.function.special.MissingMath Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ojalgo Show documentation
Show all versions of ojalgo Show documentation
oj! Algorithms - ojAlgo - is Open Source Java code that has to do with mathematics, linear algebra and optimisation.
/*
* Copyright 1997-2024 Optimatika
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
package org.ojalgo.function.special;
import static org.ojalgo.function.constant.PrimitiveMath.ONE;
import java.math.BigDecimal;
import java.math.MathContext;
import java.math.RoundingMode;
import org.ojalgo.function.constant.BigMath;
/**
* Math utilities missing from {@link Math}.
*
* @author apete
*/
public abstract class MissingMath {
/**
* Corresponding to binary 256 octuple precision
*/
private static final MathContext MC256 = new MathContext(71, RoundingMode.HALF_EVEN);
public static double acosh(final double arg) {
return Math.log(arg + Math.sqrt(arg * arg - 1.0));
}
public static double asinh(final double arg) {
return Math.log(arg + Math.sqrt(arg * arg + 1.0));
}
/**
*
* https://math.stackexchange.com/questions/1098487/atan2-faster-approximation/1105038
*
*
* This is about 10x faster than {@link Math#atan2(double, double)}
*
*/
public static double atan2(final double y, final double x) {
if (y == 0.0 && x == 0.0) {
return 0.0;
}
double ay = Math.abs(y);
double ax = Math.abs(x);
double a = Math.min(ay, ax) / Math.max(ay, ax);
double s = a * a;
double retVal = ((-0.0464964749 * s + 0.15931422) * s - 0.327622764) * s * a + a;
if (ay > ax) {
retVal = 1.570796326794897 - retVal;
}
if (x < 0.0) {
retVal = 3.141592653589793 - retVal;
}
if (y < 0.0) {
retVal = -retVal;
}
return retVal;
}
public static double atanh(final double arg) {
return Math.log((1.0 + arg) / (1.0 - arg)) / 2.0;
}
public static BigDecimal divide(final BigDecimal numerator, final BigDecimal denominator) {
return numerator.divide(denominator, MC256);
}
/**
* 13!
does not fit in an int
, and 21!
does not fit in a
* long
- that's why this method returns a double
.
*/
public static double factorial(final int arg) {
if (arg < 0) {
throw new IllegalArgumentException();
}
if (arg < 2) {
return ONE;
}
if (arg < 13) {
return MissingMath.factorialInt(arg);
}
if (arg < 21) {
return MissingMath.factorialLong(arg);
}
return MissingMath.factorialDouble(arg);
}
/**
* Greatest Common Denominator
*/
public static int gcd(final int val1, final int val2) {
int retVal = 1;
int abs1 = Math.abs(val1);
int abs2 = Math.abs(val2);
int tmpMax = Math.max(abs1, abs2);
int tmpMin = Math.min(abs1, abs2);
while (tmpMin != 0) {
retVal = tmpMin;
tmpMin = tmpMax % tmpMin;
tmpMax = retVal;
}
return retVal;
}
public static int gcd(final int val1, final int... vals) {
int retVal = val1;
if (retVal == 1) {
return 1;
}
for (int i = 0; i < vals.length; i++) {
retVal = MissingMath.gcd(retVal, vals[i]);
if (retVal == 1) {
return 1;
}
}
return retVal;
}
public static int gcd(final int[] vals) {
return MissingMath.gcd(vals[0], vals);
}
public static long gcd(final long val1, final long... vals) {
long retVal = val1;
if (retVal == 1L) {
return 1L;
}
for (int i = 0; i < vals.length; i++) {
retVal = MissingMath.gcd(retVal, vals[i]);
if (retVal == 1L) {
return 1L;
}
}
return retVal;
}
/**
* Greatest Common Denominator
*/
public static long gcd(final long val1, final long val2) {
long retVal = 1L;
long abs1 = Math.abs(val1);
long abs2 = Math.abs(val2);
long tmpMax = Math.max(abs1, abs2);
long tmpMin = Math.min(abs1, abs2);
while (tmpMin != 0L) {
retVal = tmpMin;
tmpMin = tmpMax % tmpMin;
tmpMax = retVal;
}
return retVal;
}
public static long gcd(final long[] vals) {
return MissingMath.gcd(vals[0], vals);
}
public static BigDecimal hypot(final BigDecimal arg1, final BigDecimal arg2) {
BigDecimal prod1 = arg1.multiply(arg1);
BigDecimal prod2 = arg2.multiply(arg2);
return MissingMath.root(prod1.add(prod2), 2);
}
public static double hypot(final double arg1, final double arg2) {
if (Double.isNaN(arg1) || Double.isNaN(arg2)) {
return Double.NaN;
}
double abs1 = Math.abs(arg1);
double abs2 = Math.abs(arg2);
double retVal = 0.0;
if (abs1 > abs2) {
retVal = abs1 * MissingMath.sqrt1px2(abs2 / abs1);
} else if (abs2 > 0.0) {
retVal = abs2 * MissingMath.sqrt1px2(abs1 / abs2);
}
return retVal;
}
/**
* For very small arguments (regardless of sign) the replacement is returned instead
*/
public static double log10(final double arg, final double replacement) {
if (Math.abs(arg) < Double.MIN_NORMAL) {
return replacement;
}
return Math.log10(arg);
}
public static double logistic(final double arg) {
return 1.0 / (1.0 + Math.exp(-arg));
}
public static double logit(final double arg) {
return Math.log(1.0 / (1.0 - arg));
}
/**
* Returns a rough approximation of {@link Math#log10(double)} for {@link BigDecimal}.
*
* - For numbers like 10^n it returns the exact correct number, n.
*
- The magnitude of 0.0 is 0.
*
- The error is [0.0,1.0) and the returned value is never more than the actual/correct value. For
* 999.0 the correct value is close to 3, but this method returns 2, as the implementation simply counts
* the digits.
*
- Works for negative numbers as the sign is disregarded.
*
- Works for fractional numbers 0.1, 0.0456, 1.2 or whatever.
*
*/
public static int magnitude(final BigDecimal arg) {
return arg.signum() == 0 ? 0 : arg.precision() - arg.scale() - 1;
}
public static double max(final double... values) {
double retVal = values[0];
for (int i = values.length; i-- != 1;) {
retVal = values[i] > retVal ? values[i] : retVal;
}
return retVal;
}
public static double max(final double a, final double b) {
return Math.max(a, b);
}
public static double max(final double a, final double b, final double c) {
return Math.max(Math.max(a, b), c);
}
public static double max(final double a, final double b, final double c, final double d) {
return Math.max(Math.max(a, b), Math.max(c, d));
}
public static int max(final int... values) {
int retVal = values[0];
for (int i = values.length; i-- != 1;) {
retVal = values[i] > retVal ? values[i] : retVal;
}
return retVal;
}
public static int max(final int a, final int b) {
return Math.max(a, b);
}
public static int max(final int a, final int b, final int c) {
return Math.max(Math.max(a, b), c);
}
public static int max(final int a, final int b, final int c, final int d) {
return Math.max(Math.max(a, b), Math.max(c, d));
}
public static long max(final long... values) {
long retVal = values[0];
for (int i = values.length; i-- != 1;) {
retVal = values[i] > retVal ? values[i] : retVal;
}
return retVal;
}
public static long max(final long a, final long b) {
return Math.max(a, b);
}
public static long max(final long a, final long b, final long c) {
return Math.max(Math.max(a, b), c);
}
public static long max(final long a, final long b, final long c, final long d) {
return Math.max(Math.max(a, b), Math.max(c, d));
}
public static double min(final double... values) {
double retVal = values[0];
for (int i = values.length; i-- != 1;) {
retVal = values[i] < retVal ? values[i] : retVal;
}
return retVal;
}
public static double min(final double a, final double b) {
return Math.min(a, b);
}
public static double min(final double a, final double b, final double c) {
return Math.min(Math.min(a, b), c);
}
public static double min(final double a, final double b, final double c, final double d) {
return Math.min(Math.min(a, b), Math.min(c, d));
}
public static int min(final int... values) {
int retVal = values[0];
for (int i = values.length; i-- != 1;) {
retVal = values[i] < retVal ? values[i] : retVal;
}
return retVal;
}
public static int min(final int a, final int b) {
return Math.min(a, b);
}
public static int min(final int a, final int b, final int c) {
return Math.min(Math.min(a, b), c);
}
public static int min(final int a, final int b, final int c, final int d) {
return Math.min(Math.min(a, b), Math.min(c, d));
}
public static long min(final long... values) {
long retVal = values[0];
for (int i = values.length; i-- != 1;) {
retVal = values[i] < retVal ? values[i] : retVal;
}
return retVal;
}
public static long min(final long a, final long b) {
return Math.min(a, b);
}
public static long min(final long a, final long b, final long c) {
return Math.min(Math.min(a, b), c);
}
public static long min(final long a, final long b, final long c, final long d) {
return Math.min(Math.min(a, b), Math.min(c, d));
}
public static double norm(final double... values) {
double retVal = Math.abs(values[0]);
for (int i = values.length; i-- != 1;) {
retVal = values[i] > retVal ? Math.abs(values[i]) : retVal;
}
return retVal;
}
public static double norm(final double a, final double b) {
return Math.max(Math.abs(a), Math.abs(b));
}
public static double norm(final double a, final double b, final double c) {
return Math.max(Math.max(Math.abs(a), Math.abs(b)), Math.abs(c));
}
public static double norm(final double a, final double b, final double c, final double d) {
return Math.max(Math.max(Math.abs(a), Math.abs(b)), Math.max(Math.abs(c), Math.abs(d)));
}
public static BigDecimal pow(final BigDecimal arg1, final BigDecimal arg2) {
if (arg2.signum() == 0) {
return BigDecimal.ONE;
}
if (arg1.signum() == 0) {
return BigDecimal.ZERO;
}
if (arg2.compareTo(BigDecimal.ONE) == 0) {
return arg1;
}
return BigDecimal.valueOf(Math.pow(arg1.doubleValue(), arg2.doubleValue()));
}
public static BigDecimal power(final BigDecimal arg, final int param) {
switch (param) {
case 0:
return BigDecimal.ONE;
case 1:
return arg;
case 2:
return arg.multiply(arg, MC256);
case 3:
return arg.multiply(arg).multiply(arg, MC256);
case 4:
BigDecimal arg2 = arg.multiply(arg);
return arg2.multiply(arg2, MC256);
default:
return arg.pow(param, MC256);
}
}
public static double power(final double arg, int param) {
if (param < 0) {
return 1.0 / MissingMath.power(arg, -param);
}
double retVal = 1.0;
while (param > 0) {
retVal = retVal * arg;
param--;
}
return retVal;
}
public static long power(final long arg, final int param) {
if (param == 0) {
return 1L;
}
if (param == 1) {
return arg;
}
if (param == 2) {
return arg * arg;
}
if (param < 0) {
return Math.round(Math.pow(arg, param));
}
long retVal = arg;
for (int p = 1; p < param; p++) {
retVal *= arg;
}
return retVal;
}
public static BigDecimal root(final BigDecimal arg, final int param) {
if (param <= 0) {
throw new IllegalArgumentException();
}
if (param == 1) {
return arg;
}
BigDecimal bigArg = arg.round(MC256);
BigDecimal bigParam = BigDecimal.valueOf(param);
BigDecimal retVal = BigDecimal.ZERO;
double primArg = bigArg.doubleValue();
if (!Double.isInfinite(primArg) && !Double.isNaN(primArg)) {
retVal = BigDecimal.valueOf(Math.pow(primArg, 1.0 / param)); // Intial guess
}
BigDecimal shouldBeZero;
while ((shouldBeZero = MissingMath.power(retVal, param).subtract(bigArg)).signum() != 0) {
retVal = retVal.subtract(shouldBeZero.divide(bigParam.multiply(retVal.pow(param - 1)), MC256));
}
return retVal;
}
public static double root(final double arg, final int param) {
if (param != 0) {
return Math.pow(arg, 1.0 / param);
}
throw new IllegalArgumentException();
}
public static int roundToInt(final double value) {
return Math.toIntExact(Math.round(value));
}
public static double scale(final double arg, int param) {
if (param == 0) {
return 1.0;
}
if (param < 0) {
int factor = 1;
while (param < 0) {
factor *= 10;
param++;
}
return Math.rint(factor / arg) * factor;
}
int factor = 1;
while (param > 0) {
factor *= 10;
param--;
}
return Math.rint(factor * arg) / factor;
}
public static BigDecimal signum(final BigDecimal arg) {
switch (arg.signum()) {
case 1:
return BigDecimal.ONE;
case -1:
return BigDecimal.ONE.negate();
default:
return BigDecimal.ZERO;
}
}
public static double sqrt1px2(final double arg) {
return Math.sqrt(1.0 + arg * arg);
}
public static BigDecimal tanh(final BigDecimal arg) {
BigDecimal retVal;
BigDecimal plus = BigMath.EXP.invoke(arg);
BigDecimal minus = BigMath.EXP.invoke(arg.negate());
BigDecimal dividend = plus.subtract(minus);
BigDecimal divisor = plus.add(minus);
if (dividend.equals(divisor)) {
retVal = BigDecimal.ONE;
} else if (dividend.equals(divisor.negate())) {
retVal = BigDecimal.ONE.negate();
} else {
retVal = BigMath.DIVIDE.apply(dividend, divisor);
}
return retVal;
}
public static int toMinIntExact(final long... values) {
return Math.toIntExact(MissingMath.min(values));
}
public static int toMinIntExact(final long a, final long b) {
return Math.toIntExact(Math.min(a, b));
}
public static int toMinIntExact(final long a, final long b, final long c) {
return Math.toIntExact(MissingMath.min(a, b, c));
}
public static int toMinIntExact(final long a, final long b, final long c, final long d) {
return Math.toIntExact(MissingMath.min(a, b, c, d));
}
static double factorialDouble(final int arg) {
double retVal = ONE;
for (int i = 2; i <= arg; i++) {
retVal *= i;
}
return retVal;
}
static int factorialInt(final int arg) {
int retVal = 1;
for (int i = 2; i <= arg; i++) {
retVal *= i;
}
return retVal;
}
static long factorialLong(final int arg) {
long retVal = 1L;
for (int i = 2; i <= arg; i++) {
retVal *= i;
}
return retVal;
}
}