org.ojalgo.array.SegmentedArray Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ojalgo Show documentation
Show all versions of ojalgo Show documentation
oj! Algorithms - ojAlgo - is Open Source Java code that has to do with mathematics, linear algebra and optimisation.
/*
* Copyright 1997-2024 Optimatika
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
package org.ojalgo.array;
import org.ojalgo.function.BinaryFunction;
import org.ojalgo.function.NullaryFunction;
import org.ojalgo.function.UnaryFunction;
import org.ojalgo.function.VoidFunction;
import org.ojalgo.function.special.PowerOf2;
import org.ojalgo.structure.Access1D;
import org.ojalgo.type.NumberDefinition;
/**
*
* An array implemented as a sequence of segments that together make up the data structure. Any
* {@link BasicArray} subclass can be used for segments. A {@link BasicArray.Factory} is used to create sparse
* segments (they're not guaranteed to actually be sparse) and a {@link DenseArray.Factory} is used to create
* dense segments (guaranteed to be dense).
*
*
* @author apete
*/
final class SegmentedArray> extends BasicArray {
private final int myIndexBits;
private final long myIndexMask;
private final ArrayFactory mySegmentFactory;
private final BasicArray[] mySegments;
/**
* All segments except the last one are assumed to (must) be of equal length. The last segment cannot be
* longer than the others.
*/
private final long mySegmentSize;
SegmentedArray(final BasicArray[] segments, final ArrayFactory segmentFactory) {
super(segmentFactory);
mySegmentSize = segments[0].count();
int tmpIndexOfLastSegment = segments.length - 1;
for (int s = 1; s < tmpIndexOfLastSegment; s++) {
if (segments[s].count() != mySegmentSize) {
throw new IllegalArgumentException("All segments (except possibly the last) must have the same size!");
}
}
if (segments[tmpIndexOfLastSegment].count() > mySegmentSize) {
throw new IllegalArgumentException("The last segment cannot be larger than the others!");
}
myIndexBits = PowerOf2.find(mySegmentSize);
if (myIndexBits < 0 || mySegmentSize != 1L << myIndexBits) {
throw new IllegalArgumentException("The segment size must be a power of 2!");
}
myIndexMask = mySegmentSize - 1L;
mySegments = segments;
mySegmentFactory = segmentFactory;
}
@SuppressWarnings("unchecked")
SegmentedArray(final long count, final int indexBits, final ArrayFactory segmentFactory) {
super(segmentFactory);
long tmpSegmentSize = 1L << indexBits; // 2^bits
int tmpNumberOfUniformSegments = (int) (count / tmpSegmentSize);
long tmpRemainder = count % tmpSegmentSize;
int tmpTotalNumberOfSegments = tmpRemainder == 0L ? (int) tmpNumberOfUniformSegments : tmpNumberOfUniformSegments + 1;
mySegments = (BasicArray[]) new BasicArray>[tmpTotalNumberOfSegments];
for (int s = 0; s < tmpNumberOfUniformSegments; s++) {
mySegments[s] = segmentFactory.makeStructuredZero(tmpSegmentSize);
}
if (tmpRemainder != 0L) {
mySegments[tmpNumberOfUniformSegments] = segmentFactory.makeStructuredZero(tmpRemainder);
}
mySegmentSize = tmpSegmentSize;
myIndexBits = indexBits;
myIndexMask = tmpSegmentSize - 1L;
mySegmentFactory = segmentFactory;
}
@Override
public void add(final long index, final Comparable> addend) {
mySegments[(int) (index >> myIndexBits)].add(index & myIndexMask, addend);
}
@Override
public void add(final long index, final double addend) {
mySegments[(int) (index >> myIndexBits)].add(index & myIndexMask, addend);
}
@Override
public void add(final long index, final float addend) {
mySegments[(int) (index >> myIndexBits)].add(index & myIndexMask, addend);
}
@Override
public long count() {
return mySegments[0].count() * (mySegments.length - 1) + mySegments[mySegments.length - 1].count();
}
@Override
public double doubleValue(final int index) {
return mySegments[index >> myIndexBits].doubleValue(index & myIndexMask);
}
@Override
public double doubleValue(final long index) {
return mySegments[(int) (index >> myIndexBits)].doubleValue(index & myIndexMask);
}
@Override
public void fillAll(final N value) {
for (BasicArray tmpSegment : mySegments) {
tmpSegment.fillAll(value);
}
}
@Override
public void fillAll(final NullaryFunction> supplier) {
for (BasicArray tmpSegment : mySegments) {
tmpSegment.fillAll(supplier);
}
}
@Override
public void fillRange(final long first, final long limit, final N value) {
int tmpFirstSegment = (int) (first / mySegmentSize);
int tmpLastSegemnt = (int) ((limit - 1) / mySegmentSize);
long tmpFirstInSegment = first % mySegmentSize;
for (int s = tmpFirstSegment; s < tmpLastSegemnt; s++) {
mySegments[s].fillRange(tmpFirstInSegment, mySegmentSize, value);
tmpFirstInSegment = 0L;
}
mySegments[tmpLastSegemnt].fillRange(tmpFirstInSegment, limit - tmpLastSegemnt * mySegmentSize, value);
}
@Override
public void fillRange(final long first, final long limit, final NullaryFunction> supplier) {
int tmpFirstSegment = (int) (first / mySegmentSize);
int tmpLastSegemnt = (int) ((limit - 1) / mySegmentSize);
long tmpFirstInSegment = first % mySegmentSize;
for (int s = tmpFirstSegment; s < tmpLastSegemnt; s++) {
mySegments[s].fillRange(tmpFirstInSegment, mySegmentSize, supplier);
tmpFirstInSegment = 0L;
}
mySegments[tmpLastSegemnt].fillRange(tmpFirstInSegment, limit - tmpLastSegemnt * mySegmentSize, supplier);
}
@Override
public N get(final long index) {
return mySegments[(int) (index >> myIndexBits)].get(index & myIndexMask);
}
@Override
public void modifyOne(final long index, final UnaryFunction modifier) {
BasicArray tmpSegment = mySegments[(int) (index >> myIndexBits)];
long tmpIndex = index & myIndexMask;
tmpSegment.set(tmpIndex, modifier.invoke(tmpSegment.get(tmpIndex)));
}
@Override
public void reset() {
for (BasicArray tmpSegment : mySegments) {
tmpSegment.reset();
}
}
@Override
public void set(final int index, final double value) {
mySegments[index >> myIndexBits].set(index & myIndexMask, value);
}
@Override
public void set(final long index, final Comparable> value) {
mySegments[(int) (index >> myIndexBits)].set(index & myIndexMask, value);
}
@Override
public void set(final long index, final double value) {
mySegments[(int) (index >> myIndexBits)].set(index & myIndexMask, value);
}
@Override
public void set(final long index, final float value) {
mySegments[(int) (index >> myIndexBits)].set(index & myIndexMask, value);
}
@Override
public int size() {
return Math.toIntExact(this.count());
}
@Override
public void visitOne(final long index, final VoidFunction visitor) {
if (this.isPrimitive()) {
visitor.invoke(this.doubleValue(index));
} else {
visitor.invoke(this.get(index));
}
}
@Override
protected void exchange(final long firstA, final long firstB, final long step, final long count) {
if (this.isPrimitive()) {
long tmpIndexA = firstA;
long tmpIndexB = firstB;
double tmpVal;
for (long i = 0L; i < count; i++) {
tmpVal = this.doubleValue(tmpIndexA);
this.set(tmpIndexA, this.doubleValue(tmpIndexB));
this.set(tmpIndexB, tmpVal);
tmpIndexA += step;
tmpIndexB += step;
}
} else {
long tmpIndexA = firstA;
long tmpIndexB = firstB;
N tmpVal;
for (long i = 0L; i < count; i++) {
tmpVal = this.get(tmpIndexA);
this.set(tmpIndexA, this.get(tmpIndexB));
this.set(tmpIndexB, tmpVal);
tmpIndexA += step;
tmpIndexB += step;
}
}
}
@Override
protected void fill(final long first, final long limit, final long step, final N value) {
if (step <= mySegmentSize) {
// Will use a continuous range of segements
int tmpFirstSegment = (int) (first / mySegmentSize);
int tmpLastSegemnt = (int) ((limit - 1L) / mySegmentSize);
long tmpFirstInSegment = first % mySegmentSize;
for (int s = tmpFirstSegment; s < tmpLastSegemnt; s++) {
mySegments[s].fill(tmpFirstInSegment, mySegmentSize, step, value);
long tmpRemainder = (mySegmentSize - tmpFirstInSegment) % step;
tmpFirstInSegment = tmpRemainder == 0L ? 0L : step - tmpRemainder;
}
mySegments[tmpLastSegemnt].fill(tmpFirstInSegment, limit - tmpLastSegemnt * mySegmentSize, step, value);
} else if (this.isPrimitive()) {
double tmpValue = NumberDefinition.doubleValue(value);
for (long i = first; i < limit; i += step) {
this.set(i, tmpValue);
}
} else {
for (long i = first; i < limit; i += step) {
this.set(i, value);
}
}
}
@Override
protected void fill(final long first, final long limit, final long step, final NullaryFunction> supplier) {
if (step <= mySegmentSize) {
// Will use a continuous range of segements
int tmpFirstSegment = (int) (first / mySegmentSize);
int tmpLastSegemnt = (int) ((limit - 1L) / mySegmentSize);
long tmpFirstInSegment = first % mySegmentSize;
for (int s = tmpFirstSegment; s < tmpLastSegemnt; s++) {
mySegments[s].fill(tmpFirstInSegment, mySegmentSize, step, supplier);
long tmpRemainder = (mySegmentSize - tmpFirstInSegment) % step;
tmpFirstInSegment = tmpRemainder == 0L ? 0L : step - tmpRemainder;
}
mySegments[tmpLastSegemnt].fill(tmpFirstInSegment, limit - tmpLastSegemnt * mySegmentSize, step, supplier);
} else if (this.isPrimitive()) {
for (long i = first; i < limit; i += step) {
this.set(i, supplier.doubleValue());
}
} else {
for (long i = first; i < limit; i += step) {
this.set(i, supplier.invoke());
}
}
}
@Override
protected void modify(final long first, final long limit, final long step, final Access1D left, final BinaryFunction function) {
if (this.isPrimitive()) {
for (long l = first; l < limit; l += step) {
this.set(l, function.invoke(left.doubleValue(l), this.doubleValue(l)));
}
} else {
for (long l = first; l < limit; l += step) {
this.set(l, function.invoke(left.get(l), this.get(l)));
}
}
}
@Override
protected void modify(final long first, final long limit, final long step, final BinaryFunction function, final Access1D right) {
if (this.isPrimitive()) {
for (long l = first; l < limit; l += step) {
this.set(l, function.invoke(this.doubleValue(l), right.doubleValue(l)));
}
} else {
for (long l = first; l < limit; l += step) {
this.set(l, function.invoke(this.get(l), right.get(l)));
}
}
}
@Override
protected void modify(final long first, final long limit, final long step, final UnaryFunction function) {
if (step <= mySegmentSize) {
// Will use a continuous range of segements
int tmpFirstSegment = (int) (first / mySegmentSize);
int tmpLastSegemnt = (int) ((limit - 1) / mySegmentSize);
long tmpFirstInSegment = first % mySegmentSize;
for (int s = tmpFirstSegment; s < tmpLastSegemnt; s++) {
mySegments[s].modify(tmpFirstInSegment, mySegmentSize, step, function);
long tmpRemainder = (mySegmentSize - tmpFirstInSegment) % step;
tmpFirstInSegment = tmpRemainder == 0L ? 0L : step - tmpRemainder;
}
mySegments[tmpLastSegemnt].modify(tmpFirstInSegment, limit - tmpLastSegemnt * mySegmentSize, step, function);
} else if (this.isPrimitive()) {
for (long i = first; i < limit; i += step) {
this.set(i, function.invoke(this.doubleValue(i)));
}
} else {
for (long i = first; i < limit; i += step) {
this.set(i, function.invoke(this.get(i)));
}
}
}
@Override
protected void visit(final long first, final long limit, final long step, final VoidFunction visitor) {
if (step <= mySegmentSize) {
// Will use a continuous range of segements
int tmpFirstSegment = (int) (first / mySegmentSize);
int tmpLastSegemnt = (int) ((limit - 1) / mySegmentSize);
long tmpFirstInSegment = first % mySegmentSize;
for (int s = tmpFirstSegment; s < tmpLastSegemnt; s++) {
mySegments[s].visit(tmpFirstInSegment, mySegmentSize, step, visitor);
long tmpRemainder = (mySegmentSize - tmpFirstInSegment) % step;
tmpFirstInSegment = tmpRemainder == 0L ? 0L : step - tmpRemainder;
}
mySegments[tmpLastSegemnt].visit(tmpFirstInSegment, limit - tmpLastSegemnt * mySegmentSize, step, visitor);
} else if (this.isPrimitive()) {
for (long i = first; i < limit; i += step) {
visitor.invoke(this.doubleValue(i));
}
} else {
for (long i = first; i < limit; i += step) {
visitor.invoke(this.get(i));
}
}
}
/**
* Will either grow the last segment to be the same size as all the others, or add another segment (with
* the same size). The returned (could be the same) instance is guaranteed to have a last segement of the
* same size as the others and at least one more "space" in that segment.
*/
SegmentedArray grow() {
BasicArray tmpLastSegment = mySegments[mySegments.length - 1];
BasicArray tmpNewSegment = mySegmentFactory.make(mySegmentSize);
long tmpLastSegmentSize = tmpLastSegment.count();
if (tmpLastSegmentSize < mySegmentSize) {
mySegments[mySegments.length - 1] = tmpNewSegment;
tmpNewSegment.fillMatching(tmpLastSegment);
return this;
}
if (tmpLastSegmentSize != mySegmentSize) {
throw new IllegalStateException();
}
@SuppressWarnings("unchecked")
BasicArray[] tmpSegments = (BasicArray[]) new BasicArray>[mySegments.length + 1];
for (int i = 0; i < mySegments.length; i++) {
tmpSegments[i] = mySegments[i];
}
tmpSegments[mySegments.length] = tmpNewSegment;
return new SegmentedArray<>(tmpSegments, mySegmentFactory);
}
}