org.ojalgo.matrix.task.iterative.GaussSeidelSolver Maven / Gradle / Ivy
Show all versions of ojalgo Show documentation
/*
* Copyright 1997-2024 Optimatika
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
package org.ojalgo.matrix.task.iterative;
import static org.ojalgo.function.constant.PrimitiveMath.*;
import java.util.List;
import org.ojalgo.RecoverableCondition;
import org.ojalgo.equation.Equation;
import org.ojalgo.matrix.store.MatrixStore;
import org.ojalgo.matrix.store.PhysicalStore;
import org.ojalgo.structure.Access2D;
import org.ojalgo.type.context.NumberContext;
/**
* For solving [A][x]=[b] where [A] has non-zero elements on the diagonal.
*
* To guarantee convergence [A] needs to be either strictly diagonally dominant, or symmetric and positive
* definite.
*
* @author apete
* @see https://en.wikipedia.org/wiki/Gauss–Seidel_method
*/
public final class GaussSeidelSolver extends StationaryIterativeSolver implements IterativeSolverTask.SparseDelegate {
public GaussSeidelSolver() {
super();
}
public double resolve(final List equations, final PhysicalStore solution) {
double tmpNormErr = POSITIVE_INFINITY;
double tmpNormRHS = ZERO;
final int tmpCountRows = equations.size();
for (int r = 0; r < tmpCountRows; r++) {
tmpNormRHS = HYPOT.invoke(tmpNormRHS, equations.get(r).getRHS());
}
int tmpIterations = 0;
final int tmpLimit = this.getIterationsLimit();
final NumberContext tmpCntxt = this.getAccuracyContext();
final double tmpRelaxationFactor = this.getRelaxationFactor();
do {
tmpNormErr = ZERO;
for (int r = 0; r < tmpCountRows; r++) {
tmpNormErr = HYPOT.invoke(tmpNormErr, equations.get(r).adjust(solution, tmpRelaxationFactor));
}
tmpIterations++;
if (this.isDebugPrinterSet()) {
this.debug(tmpIterations, tmpNormErr / tmpNormRHS, solution);
}
} while ((tmpIterations < tmpLimit) && !tmpCntxt.isSmall(tmpNormRHS, tmpNormErr));
return tmpNormErr / tmpNormRHS;
}
public MatrixStore solve(final Access2D> body, final Access2D> rhs, final PhysicalStore current) throws RecoverableCondition {
final List equations = IterativeSolverTask.toListOfRows(body, rhs);
this.resolve(equations, current);
return current;
}
}