
org.ojalgo.matrix.operation.HouseholderLeft Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ojalgo Show documentation
Show all versions of ojalgo Show documentation
oj! Algorithms - ojAlgo - is Open Source Java code that has to do with mathematics, linear algebra and optimisation.
/*
* Copyright 1997-2025 Optimatika
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
package org.ojalgo.matrix.operation;
import java.util.function.IntSupplier;
import org.ojalgo.array.operation.AXPY;
import org.ojalgo.array.operation.DOT;
import org.ojalgo.concurrent.DivideAndConquer;
import org.ojalgo.concurrent.DivideAndConquer.Conquerer;
import org.ojalgo.concurrent.Parallelism;
import org.ojalgo.concurrent.ProcessingService;
import org.ojalgo.matrix.transformation.Householder;
import org.ojalgo.scalar.Scalar;
public final class HouseholderLeft implements MatrixOperation {
public static IntSupplier PARALLELISM = Parallelism.THREADS;
public static int THRESHOLD = 128;
private static final DivideAndConquer.Divider DIVIDER = ProcessingService.INSTANCE.divider();
public static void call(final double[] data, final int structure, final int first, final double[] hVector, final int hFirst, final double hBeta) {
int nbCols = data.length / structure;
if (nbCols > THRESHOLD) {
HouseholderLeft.divide(first, nbCols, (f, l) -> HouseholderLeft.invoke(data, structure, f, l, hVector, hFirst, hBeta));
} else {
HouseholderLeft.invoke(data, structure, first, nbCols, hVector, hFirst, hBeta);
}
}
public static void call(final double[] data, final int structure, final int first, final Householder.Primitive64 householder) {
HouseholderLeft.call(data, structure, first, householder.vector, householder.first, householder.beta);
}
public static void call(final double[][] data, final int structure, final int first, final double[] hVector, final int hFirst, final double hBeta) {
int nbCols = data.length;
if (nbCols > THRESHOLD) {
HouseholderLeft.divide(first, nbCols, (f, l) -> HouseholderLeft.invoke(data, structure, f, l, hVector, hFirst, hBeta));
} else {
HouseholderLeft.invoke(data, structure, first, nbCols, hVector, hFirst, hBeta);
}
}
public static void call(final double[][] data, final int structure, final int first, final Householder.Primitive64 householder) {
HouseholderLeft.call(data, structure, first, householder.vector, householder.first, householder.beta);
}
public static void call(final float[] data, final int structure, final int first, final Householder.Primitive32 householder) {
int nbCols = data.length / structure;
if (nbCols > THRESHOLD) {
HouseholderLeft.divide(first, nbCols, (f, l) -> HouseholderLeft.invoke(data, structure, f, l, householder));
} else {
HouseholderLeft.invoke(data, structure, first, nbCols, householder);
}
}
public static > void call(final N[] data, final int structure, final int first, final Householder.Generic householder,
final Scalar.Factory scalar) {
int nbCols = data.length / structure;
if (nbCols > THRESHOLD) {
HouseholderLeft.divide(first, nbCols, (f, l) -> HouseholderLeft.invoke(data, structure, f, l, householder, scalar));
} else {
HouseholderLeft.invoke(data, structure, first, nbCols, householder, scalar);
}
}
private static void doColumn(final double[] data, final int offset, final double[] vector, final double beta, final int first, final int limit) {
double scale = beta * DOT.invoke(data, offset, vector, 0, first, limit);
AXPY.invoke(data, offset, -scale, vector, 0, first, limit);
}
private static void doColumn(final float[] data, final int offset, final float[] vector, final float beta, final int first, final int limit) {
float scale = beta * DOT.invoke(data, offset, vector, 0, first, limit);
AXPY.invoke(data, offset, -scale, vector, 0, first, limit);
}
static void divide(final int first, final int limit, final Conquerer conquerer) {
DIVIDER.parallelism(PARALLELISM).threshold(THRESHOLD).divide(first, limit, conquerer);
}
static void invoke(final double[] data, final int structure, final int first, final int limit, final double[] hVector, final int hFirst,
final double hBeta) {
for (int j = first; j < limit; j++) {
HouseholderLeft.doColumn(data, j * structure, hVector, hBeta, hFirst, structure);
}
}
static void invoke(final double[][] data, final int structure, final int first, final int limit, final double[] hVector, final int hFirst,
final double hBeta) {
for (int j = first; j < limit; j++) {
HouseholderLeft.doColumn(data[j], 0, hVector, hBeta, hFirst, structure);
}
}
static void invoke(final float[] data, final int structure, final int first, final int limit, final Householder.Primitive32 householder) {
float[] hVector = householder.vector;
int hFirst = householder.first;
float hBeta = householder.beta;
for (int j = first; j < limit; j++) {
HouseholderLeft.doColumn(data, j * structure, hVector, hBeta, hFirst, structure);
}
}
static > void invoke(final N[] data, final int structure, final int first, final int limit, final Householder.Generic householder,
final Scalar.Factory scalar) {
N[] hVector = householder.vector;
int hFirst = householder.first;
N hBeta = householder.beta;
Scalar tmpScale;
int tmpIndex;
for (int j = first; j < limit; j++) {
tmpScale = scalar.zero();
tmpIndex = hFirst + j * structure;
for (int i = hFirst; i < structure; i++) {
tmpScale = tmpScale.add(hVector[i].conjugate().multiply(data[tmpIndex++]));
}
tmpScale = tmpScale.multiply(hBeta);
tmpIndex = hFirst + j * structure;
for (int i = hFirst; i < structure; i++) {
data[tmpIndex] = data[tmpIndex].subtract(tmpScale.multiply(hVector[i])).get();
tmpIndex++;
}
}
}
private HouseholderLeft() {
super();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy