
org.ojalgo.matrix.decomposition.Bidiagonal Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of ojalgo Show documentation
Show all versions of ojalgo Show documentation
oj! Algorithms - ojAlgo - is Open Source Java code that has to do with mathematics, linear algebra and optimisation.
The newest version!
/*
* Copyright 1997-2025 Optimatika
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
package org.ojalgo.matrix.decomposition;
import org.ojalgo.matrix.store.MatrixStore;
import org.ojalgo.scalar.ComplexNumber;
import org.ojalgo.scalar.Quadruple;
import org.ojalgo.scalar.Quaternion;
import org.ojalgo.scalar.RationalNumber;
import org.ojalgo.structure.Structure2D;
import org.ojalgo.type.context.NumberContext;
/**
* A general matrix [A] can be factorized by similarity transformations into the form [A]=[LQ][D][RQ]
* -1 where:
*
* - [A] (m-by-n) is any, real or complex, matrix
* - [D] (r-by-r) or (m-by-n) is, upper or lower, bidiagonal
* - [LQ] (m-by-r) or (m-by-m) is orthogonal
* - [RQ] (n-by-r) or (n-by-n) is orthogonal
* - r = min(m,n)
*
*
* @author apete
*/
public interface Bidiagonal> extends MatrixDecomposition, MatrixDecomposition.EconomySize {
interface Factory> extends MatrixDecomposition.Factory> {
default Bidiagonal make(final boolean fullSize) {
return this.make(TYPICAL, fullSize);
}
@Override
default Bidiagonal make(final Structure2D typical) {
return this.make(typical, false);
}
Bidiagonal make(Structure2D typical, boolean fullSize);
}
Factory C128 = (typical, fullSize) -> new DenseBidiagonal.C128(fullSize);
Factory H256 = (typical, fullSize) -> new DenseBidiagonal.H256(fullSize);
Factory Q128 = (typical, fullSize) -> new DenseBidiagonal.Q128(fullSize);
Factory R064 = (typical, fullSize) -> new DenseBidiagonal.R064(fullSize);
Factory R128 = (typical, fullSize) -> new DenseBidiagonal.R128(fullSize);
static > boolean equals(final MatrixStore matrix, final Bidiagonal decomposition, final NumberContext context) {
final int tmpRowDim = (int) matrix.countRows();
final int tmpColDim = (int) matrix.countColumns();
final MatrixStore tmpQ1 = decomposition.getLQ();
decomposition.getD();
final MatrixStore tmpQ2 = decomposition.getRQ();
final MatrixStore tmpConjugatedQ1 = tmpQ1.conjugate();
final MatrixStore tmpConjugatedQ2 = tmpQ2.conjugate();
MatrixStore tmpThis;
MatrixStore tmpThat;
boolean retVal = tmpRowDim == tmpQ1.countRows() && tmpQ2.countRows() == tmpColDim;
// Check that it's possible to reconstruct the original matrix.
if (retVal) {
tmpThis = matrix;
tmpThat = decomposition.reconstruct();
retVal &= tmpThis.equals(tmpThat, context);
}
// If Q1 is square, then check if it is orthogonal/unitary.
if (retVal && tmpQ1.countRows() == tmpQ1.countColumns()) {
tmpThis = tmpQ1;
tmpThat = tmpQ1.multiply(tmpConjugatedQ1).multiply(tmpQ1);
retVal &= tmpThis.equals(tmpThat, context);
}
// If Q2 is square, then check if it is orthogonal/unitary.
if (retVal && tmpQ2.countRows() == tmpQ2.countColumns()) {
tmpThis = tmpQ2;
tmpThat = tmpQ2.multiply(tmpConjugatedQ2).multiply(tmpQ2);
retVal &= tmpThis.equals(tmpThat, context);
}
return retVal;
}
MatrixStore getD();
MatrixStore getLQ();
MatrixStore getRQ();
boolean isUpper();
@Override
default MatrixStore reconstruct() {
MatrixStore mtrxQ1 = this.getLQ();
MatrixStore mtrxD = this.getD();
MatrixStore mtrxQ2 = this.getRQ();
return mtrxQ1.multiply(mtrxD).multiply(mtrxQ2.conjugate());
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy