All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.ojalgo.random.process.Process1D Maven / Gradle / Ivy

Go to download

oj! Algorithms - ojAlgo - is Open Source Java code that has to do with mathematics, linear algebra and optimisation.

The newest version!
/*
 * Copyright 1997-2025 Optimatika
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */
package org.ojalgo.random.process;

import java.util.Collection;
import java.util.List;

import org.ojalgo.array.Array1D;
import org.ojalgo.array.ArrayR064;
import org.ojalgo.random.Distribution;
import org.ojalgo.random.Random1D;
import org.ojalgo.random.process.Process1D.ComponentProcess;
import org.ojalgo.structure.Access1D;
import org.ojalgo.structure.Access2D;

/**
 * Drive a set of processes simultaneously – correlated or uncorrelated.
 *
 * @author apete
 */
public final class Process1D

> { interface ComponentProcess extends RandomProcess { double getValue(); void setValue(double newValue); double step(double stepSize, double standardGaussianInnovation); } /** * Correlated processes */ public static

> Process1D

of(final Access2D correlations, final List processes) { return new Process1D<>(new Random1D(correlations), Process1D.toArray(processes)); } /** * Correlated processes */ public static

> Process1D

of(final Access2D correlations, final P... processes) { return new Process1D<>(new Random1D(correlations), processes); } /** * Uncorrelated processes */ public static

> Process1D

of(final List processes) { return new Process1D<>(new Random1D(processes.size()), Process1D.toArray(processes)); } /** * Uncorrelated processes */ public static

> Process1D

of(final P... processes) { return new Process1D<>(new Random1D(processes.length), processes); } static

> P[] toArray(final Collection processes) { return (P[]) processes.toArray(new ComponentProcess[processes.size()]); } private final Random1D myGenerator; private final P[] myProcesses; Process1D(final Random1D generator, final P... processes) { super(); myGenerator = generator; myProcesses = processes; } public double getValue(final int index) { return myProcesses[index].getValue(); } public ArrayR064 getValues() { int length = myProcesses.length; ArrayR064 retVal = ArrayR064.make(length); for (int p = 0; p < length; p++) { retVal.set(p, myProcesses[p].getValue()); } return retVal; } public void setValue(final int index, final double newValue) { myProcesses[index].setValue(newValue); } public void setValues(final Access1D newValues) { for (int p = 0; p < myProcesses.length; p++) { myProcesses[p].setValue(newValues.doubleValue(p)); } } public int size() { return myProcesses.length; } public Array1D step(final double stepSize) { Array1D retVal = myGenerator.nextGaussian(); for (int p = 0; p < myProcesses.length; p++) { double standardGaussianInnovation = retVal.doubleValue(p); double nextValue = myProcesses[p].step(stepSize, standardGaussianInnovation); retVal.set(p, nextValue); } return retVal; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy