Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
{{>partial_header}}
from datetime import date, datetime # noqa: F401
import inspect
import io
import os
import pprint
import re
import tempfile
from dateutil.parser import parse
from {{packageName}}.exceptions import (
ApiKeyError,
ApiAttributeError,
ApiTypeError,
ApiValueError,
)
none_type = type(None)
file_type = io.IOBase
class cached_property(object):
# this caches the result of the function call for fn with no inputs
# use this as a decorator on fuction methods that you want converted
# into cached properties
result_key = '_results'
def __init__(self, fn):
self._fn = fn
def __get__(self, instance, cls=None):
if self.result_key in vars(self):
return vars(self)[self.result_key]
else:
result = self._fn()
setattr(self, self.result_key, result)
return result
PRIMITIVE_TYPES = (list, float, int, bool, datetime, date, str, file_type)
def allows_single_value_input(cls):
"""
This function returns True if the input composed schema model or any
descendant model allows a value only input
This is true for cases where oneOf contains items like:
oneOf:
- float
- NumberWithValidation
- StringEnum
- ArrayModel
- null
TODO: lru_cache this
"""
if (
issubclass(cls, ModelSimple) or
cls in PRIMITIVE_TYPES
):
return True
elif issubclass(cls, ModelComposed):
if not cls._composed_schemas['oneOf']:
return False
return any(allows_single_value_input(c) for c in cls._composed_schemas['oneOf'])
return False
def composed_model_input_classes(cls):
"""
This function returns a list of the possible models that can be accepted as
inputs.
TODO: lru_cache this
"""
if issubclass(cls, ModelSimple) or cls in PRIMITIVE_TYPES:
return [cls]
elif issubclass(cls, ModelNormal):
if cls.discriminator is None:
return [cls]
else:
return get_discriminated_classes(cls)
elif issubclass(cls, ModelComposed):
if not cls._composed_schemas['oneOf']:
return []
if cls.discriminator is None:
input_classes = []
for c in cls._composed_schemas['oneOf']:
input_classes.extend(composed_model_input_classes(c))
return input_classes
else:
return get_discriminated_classes(cls)
return []
class OpenApiModel(object):
"""The base class for all OpenAPIModels"""
{{> model_templates/method_set_attribute }}
{{> model_templates/methods_shared }}
def __new__(cls, *args, **kwargs):
# this function uses the discriminator to
# pick a new schema/class to instantiate because a discriminator
# propertyName value was passed in
if len(args) == 1:
arg = args[0]
if arg is None and is_type_nullable(cls):
# The input data is the 'null' value and the type is nullable.
return None
if issubclass(cls, ModelComposed) and allows_single_value_input(cls):
model_kwargs = {}
oneof_instance = get_oneof_instance(cls, model_kwargs, kwargs, model_arg=arg)
return oneof_instance
visited_composed_classes = kwargs.get('_visited_composed_classes', ())
if (
cls.discriminator is None or
cls in visited_composed_classes
):
# Use case 1: this openapi schema (cls) does not have a discriminator
# Use case 2: we have already visited this class before and are sure that we
# want to instantiate it this time. We have visited this class deserializing
# a payload with a discriminator. During that process we traveled through
# this class but did not make an instance of it. Now we are making an
# instance of a composed class which contains cls in it, so this time make an instance of cls.
#
# Here's an example of use case 2: If Animal has a discriminator
# petType and we pass in "Dog", and the class Dog
# allOf includes Animal, we move through Animal
# once using the discriminator, and pick Dog.
# Then in the composed schema dog Dog, we will make an instance of the
# Animal class (because Dal has allOf: Animal) but this time we won't travel
# through Animal's discriminator because we passed in
# _visited_composed_classes = (Animal,)
return super(OpenApiModel, cls).__new__(cls)
# Get the name and value of the discriminator property.
# The discriminator name is obtained from the discriminator meta-data
# and the discriminator value is obtained from the input data.
discr_propertyname_py = list(cls.discriminator.keys())[0]
discr_propertyname_js = cls.attribute_map[discr_propertyname_py]
if discr_propertyname_js in kwargs:
discr_value = kwargs[discr_propertyname_js]
elif discr_propertyname_py in kwargs:
discr_value = kwargs[discr_propertyname_py]
else:
# The input data does not contain the discriminator property.
path_to_item = kwargs.get('_path_to_item', ())
raise ApiValueError(
"Cannot deserialize input data due to missing discriminator. "
"The discriminator property '%s' is missing at path: %s" %
(discr_propertyname_js, path_to_item)
)
# Implementation note: the last argument to get_discriminator_class
# is a list of visited classes. get_discriminator_class may recursively
# call itself and update the list of visited classes, and the initial
# value must be an empty list. Hence not using 'visited_composed_classes'
new_cls = get_discriminator_class(
cls, discr_propertyname_py, discr_value, [])
if new_cls is None:
path_to_item = kwargs.get('_path_to_item', ())
disc_prop_value = kwargs.get(
discr_propertyname_js, kwargs.get(discr_propertyname_py))
raise ApiValueError(
"Cannot deserialize input data due to invalid discriminator "
"value. The OpenAPI document has no mapping for discriminator "
"property '%s'='%s' at path: %s" %
(discr_propertyname_js, disc_prop_value, path_to_item)
)
if new_cls in visited_composed_classes:
# if we are making an instance of a composed schema Descendent
# which allOf includes Ancestor, then Ancestor contains
# a discriminator that includes Descendent.
# So if we make an instance of Descendent, we have to make an
# instance of Ancestor to hold the allOf properties.
# This code detects that use case and makes the instance of Ancestor
# For example:
# When making an instance of Dog, _visited_composed_classes = (Dog,)
# then we make an instance of Animal to include in dog._composed_instances
# so when we are here, cls is Animal
# cls.discriminator != None
# cls not in _visited_composed_classes
# new_cls = Dog
# but we know we know that we already have Dog
# because it is in visited_composed_classes
# so make Animal here
return super(OpenApiModel, cls).__new__(cls)
# Build a list containing all oneOf and anyOf descendants.
oneof_anyof_classes = None
if cls._composed_schemas is not None:
oneof_anyof_classes = (
cls._composed_schemas.get('oneOf', ()) +
cls._composed_schemas.get('anyOf', ()))
oneof_anyof_child = new_cls in oneof_anyof_classes
kwargs['_visited_composed_classes'] = visited_composed_classes + (cls,)
if cls._composed_schemas.get('allOf') and oneof_anyof_child:
# Validate that we can make self because when we make the
# new_cls it will not include the allOf validations in self
self_inst = super(OpenApiModel, cls).__new__(cls)
self_inst.__init__(*args, **kwargs)
new_inst = new_cls.__new__(new_cls, *args, **kwargs)
new_inst.__init__(*args, **kwargs)
return new_inst
class ModelSimple(OpenApiModel):
"""the parent class of models whose type != object in their
swagger/openapi"""
{{> model_templates/methods_setattr_getattr_normal }}
{{> model_templates/methods_tostr_eq_simple }}
class ModelNormal(OpenApiModel):
"""the parent class of models whose type == object in their
swagger/openapi"""
{{> model_templates/methods_setattr_getattr_normal }}
{{> model_templates/methods_todict_tostr_eq_shared}}
class ModelComposed(OpenApiModel):
"""the parent class of models whose type == object in their
swagger/openapi and have oneOf/allOf/anyOf
When one sets a property we use var_name_to_model_instances to store the value in
the correct class instances + run any type checking + validation code.
When one gets a property we use var_name_to_model_instances to get the value
from the correct class instances.
This allows multiple composed schemas to contain the same property with additive
constraints on the value.
_composed_schemas (dict) stores the anyOf/allOf/oneOf classes
key (str): allOf/oneOf/anyOf
value (list): the classes in the XOf definition.
Note: none_type can be included when the openapi document version >= 3.1.0
_composed_instances (list): stores a list of instances of the composed schemas
defined in _composed_schemas. When properties are accessed in the self instance,
they are returned from the self._data_store or the data stores in the instances
in self._composed_schemas
_var_name_to_model_instances (dict): maps between a variable name on self and
the composed instances (self included) which contain that data
key (str): property name
value (list): list of class instances, self or instances in _composed_instances
which contain the value that the key is referring to.
"""
{{> model_templates/methods_setattr_getattr_composed }}
{{> model_templates/methods_todict_tostr_eq_shared}}
COERCION_INDEX_BY_TYPE = {
ModelComposed: 0,
ModelNormal: 1,
ModelSimple: 2,
none_type: 3, # The type of 'None'.
list: 4,
dict: 5,
float: 6,
int: 7,
bool: 8,
datetime: 9,
date: 10,
str: 11,
file_type: 12, # 'file_type' is an alias for the built-in 'file' or 'io.IOBase' type.
}
# these are used to limit what type conversions we try to do
# when we have a valid type already and we want to try converting
# to another type
UPCONVERSION_TYPE_PAIRS = (
(str, datetime),
(str, date),
(int, float), # A float may be serialized as an integer, e.g. '3' is a valid serialized float.
(list, ModelComposed),
(dict, ModelComposed),
(str, ModelComposed),
(int, ModelComposed),
(float, ModelComposed),
(list, ModelComposed),
(list, ModelNormal),
(dict, ModelNormal),
(str, ModelSimple),
(int, ModelSimple),
(float, ModelSimple),
(list, ModelSimple),
)
COERCIBLE_TYPE_PAIRS = {
False: ( # client instantiation of a model with client data
# (dict, ModelComposed),
# (list, ModelComposed),
# (dict, ModelNormal),
# (list, ModelNormal),
# (str, ModelSimple),
# (int, ModelSimple),
# (float, ModelSimple),
# (list, ModelSimple),
# (str, int),
# (str, float),
# (str, datetime),
# (str, date),
# (int, str),
# (float, str),
),
True: ( # server -> client data
(dict, ModelComposed),
(list, ModelComposed),
(dict, ModelNormal),
(list, ModelNormal),
(str, ModelSimple),
(int, ModelSimple),
(float, ModelSimple),
(list, ModelSimple),
# (str, int),
# (str, float),
(str, datetime),
(str, date),
# (int, str),
# (float, str),
(str, file_type)
),
}
def get_simple_class(input_value):
"""Returns an input_value's simple class that we will use for type checking
Python2:
float and int will return int, where int is the python3 int backport
str and unicode will return str, where str is the python3 str backport
Note: float and int ARE both instances of int backport
Note: str_py2 and unicode_py2 are NOT both instances of str backport
Args:
input_value (class/class_instance): the item for which we will return
the simple class
"""
if isinstance(input_value, type):
# input_value is a class
return input_value
elif isinstance(input_value, tuple):
return tuple
elif isinstance(input_value, list):
return list
elif isinstance(input_value, dict):
return dict
elif isinstance(input_value, none_type):
return none_type
elif isinstance(input_value, file_type):
return file_type
elif isinstance(input_value, bool):
# this must be higher than the int check because
# isinstance(True, int) == True
return bool
elif isinstance(input_value, int):
return int
elif isinstance(input_value, datetime):
# this must be higher than the date check because
# isinstance(datetime_instance, date) == True
return datetime
elif isinstance(input_value, date):
return date
elif isinstance(input_value, str):
return str
return type(input_value)
def check_allowed_values(allowed_values, input_variable_path, input_values):
"""Raises an exception if the input_values are not allowed
Args:
allowed_values (dict): the allowed_values dict
input_variable_path (tuple): the path to the input variable
input_values (list/str/int/float/date/datetime): the values that we
are checking to see if they are in allowed_values
"""
these_allowed_values = list(allowed_values[input_variable_path].values())
if (isinstance(input_values, list)
and not set(input_values).issubset(
set(these_allowed_values))):
invalid_values = ", ".join(
map(str, set(input_values) - set(these_allowed_values))),
raise ApiValueError(
"Invalid values for `%s` [%s], must be a subset of [%s]" %
(
input_variable_path[0],
invalid_values,
", ".join(map(str, these_allowed_values))
)
)
elif (isinstance(input_values, dict)
and not set(
input_values.keys()).issubset(set(these_allowed_values))):
invalid_values = ", ".join(
map(str, set(input_values.keys()) - set(these_allowed_values)))
raise ApiValueError(
"Invalid keys in `%s` [%s], must be a subset of [%s]" %
(
input_variable_path[0],
invalid_values,
", ".join(map(str, these_allowed_values))
)
)
elif (not isinstance(input_values, (list, dict))
and input_values not in these_allowed_values):
raise ApiValueError(
"Invalid value for `%s` (%s), must be one of %s" %
(
input_variable_path[0],
input_values,
these_allowed_values
)
)
def is_json_validation_enabled(schema_keyword, configuration=None):
"""Returns true if JSON schema validation is enabled for the specified
validation keyword. This can be used to skip JSON schema structural validation
as requested in the configuration.
Args:
schema_keyword (string): the name of a JSON schema validation keyword.
configuration (Configuration): the configuration class.
"""
return (configuration is None or
not hasattr(configuration, '_disabled_client_side_validations') or
schema_keyword not in configuration._disabled_client_side_validations)
def check_validations(
validations, input_variable_path, input_values,
configuration=None):
"""Raises an exception if the input_values are invalid
Args:
validations (dict): the validation dictionary.
input_variable_path (tuple): the path to the input variable.
input_values (list/str/int/float/date/datetime): the values that we
are checking.
configuration (Configuration): the configuration class.
"""
if input_values is None:
return
current_validations = validations[input_variable_path]
if (is_json_validation_enabled('multipleOf', configuration) and
'multiple_of' in current_validations and
isinstance(input_values, (int, float)) and
not (float(input_values) / current_validations['multiple_of']).is_integer()):
# Note 'multipleOf' will be as good as the floating point arithmetic.
raise ApiValueError(
"Invalid value for `%s`, value must be a multiple of "
"`%s`" % (
input_variable_path[0],
current_validations['multiple_of']
)
)
if (is_json_validation_enabled('maxLength', configuration) and
'max_length' in current_validations and
len(input_values) > current_validations['max_length']):
raise ApiValueError(
"Invalid value for `%s`, length must be less than or equal to "
"`%s`" % (
input_variable_path[0],
current_validations['max_length']
)
)
if (is_json_validation_enabled('minLength', configuration) and
'min_length' in current_validations and
len(input_values) < current_validations['min_length']):
raise ApiValueError(
"Invalid value for `%s`, length must be greater than or equal to "
"`%s`" % (
input_variable_path[0],
current_validations['min_length']
)
)
if (is_json_validation_enabled('maxItems', configuration) and
'max_items' in current_validations and
len(input_values) > current_validations['max_items']):
raise ApiValueError(
"Invalid value for `%s`, number of items must be less than or "
"equal to `%s`" % (
input_variable_path[0],
current_validations['max_items']
)
)
if (is_json_validation_enabled('minItems', configuration) and
'min_items' in current_validations and
len(input_values) < current_validations['min_items']):
raise ValueError(
"Invalid value for `%s`, number of items must be greater than or "
"equal to `%s`" % (
input_variable_path[0],
current_validations['min_items']
)
)
items = ('exclusive_maximum', 'inclusive_maximum', 'exclusive_minimum',
'inclusive_minimum')
if (any(item in current_validations for item in items)):
if isinstance(input_values, list):
max_val = max(input_values)
min_val = min(input_values)
elif isinstance(input_values, dict):
max_val = max(input_values.values())
min_val = min(input_values.values())
else:
max_val = input_values
min_val = input_values
if (is_json_validation_enabled('exclusiveMaximum', configuration) and
'exclusive_maximum' in current_validations and
max_val >= current_validations['exclusive_maximum']):
raise ApiValueError(
"Invalid value for `%s`, must be a value less than `%s`" % (
input_variable_path[0],
current_validations['exclusive_maximum']
)
)
if (is_json_validation_enabled('maximum', configuration) and
'inclusive_maximum' in current_validations and
max_val > current_validations['inclusive_maximum']):
raise ApiValueError(
"Invalid value for `%s`, must be a value less than or equal to "
"`%s`" % (
input_variable_path[0],
current_validations['inclusive_maximum']
)
)
if (is_json_validation_enabled('exclusiveMinimum', configuration) and
'exclusive_minimum' in current_validations and
min_val <= current_validations['exclusive_minimum']):
raise ApiValueError(
"Invalid value for `%s`, must be a value greater than `%s`" %
(
input_variable_path[0],
current_validations['exclusive_maximum']
)
)
if (is_json_validation_enabled('minimum', configuration) and
'inclusive_minimum' in current_validations and
min_val < current_validations['inclusive_minimum']):
raise ApiValueError(
"Invalid value for `%s`, must be a value greater than or equal "
"to `%s`" % (
input_variable_path[0],
current_validations['inclusive_minimum']
)
)
flags = current_validations.get('regex', {}).get('flags', 0)
if (is_json_validation_enabled('pattern', configuration) and
'regex' in current_validations and
not re.search(current_validations['regex']['pattern'],
input_values, flags=flags)):
err_msg = r"Invalid value for `%s`, must match regular expression `%s`" % (
input_variable_path[0],
current_validations['regex']['pattern']
)
if flags != 0:
# Don't print the regex flags if the flags are not
# specified in the OAS document.
err_msg = r"%s with flags=`%s`" % (err_msg, flags)
raise ApiValueError(err_msg)
def order_response_types(required_types):
"""Returns the required types sorted in coercion order
Args:
required_types (list/tuple): collection of classes or instance of
list or dict with class information inside it.
Returns:
(list): coercion order sorted collection of classes or instance
of list or dict with class information inside it.
"""
def index_getter(class_or_instance):
if isinstance(class_or_instance, list):
return COERCION_INDEX_BY_TYPE[list]
elif isinstance(class_or_instance, dict):
return COERCION_INDEX_BY_TYPE[dict]
elif (inspect.isclass(class_or_instance)
and issubclass(class_or_instance, ModelComposed)):
return COERCION_INDEX_BY_TYPE[ModelComposed]
elif (inspect.isclass(class_or_instance)
and issubclass(class_or_instance, ModelNormal)):
return COERCION_INDEX_BY_TYPE[ModelNormal]
elif (inspect.isclass(class_or_instance)
and issubclass(class_or_instance, ModelSimple)):
return COERCION_INDEX_BY_TYPE[ModelSimple]
elif class_or_instance in COERCION_INDEX_BY_TYPE:
return COERCION_INDEX_BY_TYPE[class_or_instance]
raise ApiValueError("Unsupported type: %s" % class_or_instance)
sorted_types = sorted(
required_types,
key=lambda class_or_instance: index_getter(class_or_instance)
)
return sorted_types
def remove_uncoercible(required_types_classes, current_item, spec_property_naming,
must_convert=True):
"""Only keeps the type conversions that are possible
Args:
required_types_classes (tuple): tuple of classes that are required
these should be ordered by COERCION_INDEX_BY_TYPE
spec_property_naming (bool): True if the variable names in the input
data are serialized names as specified in the OpenAPI document.
False if the variables names in the input data are python
variable names in PEP-8 snake case.
current_item (any): the current item (input data) to be converted
Keyword Args:
must_convert (bool): if True the item to convert is of the wrong
type and we want a big list of coercibles
if False, we want a limited list of coercibles
Returns:
(list): the remaining coercible required types, classes only
"""
current_type_simple = get_simple_class(current_item)
results_classes = []
for required_type_class in required_types_classes:
# convert our models to OpenApiModel
required_type_class_simplified = required_type_class
if isinstance(required_type_class_simplified, type):
if issubclass(required_type_class_simplified, ModelComposed):
required_type_class_simplified = ModelComposed
elif issubclass(required_type_class_simplified, ModelNormal):
required_type_class_simplified = ModelNormal
elif issubclass(required_type_class_simplified, ModelSimple):
required_type_class_simplified = ModelSimple
if required_type_class_simplified == current_type_simple:
# don't consider converting to one's own class
continue
class_pair = (current_type_simple, required_type_class_simplified)
if must_convert and class_pair in COERCIBLE_TYPE_PAIRS[spec_property_naming]:
results_classes.append(required_type_class)
elif class_pair in UPCONVERSION_TYPE_PAIRS:
results_classes.append(required_type_class)
return results_classes
def get_discriminated_classes(cls):
"""
Returns all the classes that a discriminator converts to
TODO: lru_cache this
"""
possible_classes = []
key = list(cls.discriminator.keys())[0]
if is_type_nullable(cls):
possible_classes.append(cls)
for discr_cls in cls.discriminator[key].values():
if hasattr(discr_cls, 'discriminator') and discr_cls.discriminator is not None:
possible_classes.extend(get_discriminated_classes(discr_cls))
else:
possible_classes.append(discr_cls)
return possible_classes
def get_possible_classes(cls, from_server_context):
# TODO: lru_cache this
possible_classes = [cls]
if from_server_context:
return possible_classes
if hasattr(cls, 'discriminator') and cls.discriminator is not None:
possible_classes = []
possible_classes.extend(get_discriminated_classes(cls))
elif issubclass(cls, ModelComposed):
possible_classes.extend(composed_model_input_classes(cls))
return possible_classes
def get_required_type_classes(required_types_mixed, spec_property_naming):
"""Converts the tuple required_types into a tuple and a dict described
below
Args:
required_types_mixed (tuple/list): will contain either classes or
instance of list or dict
spec_property_naming (bool): if True these values came from the
server, and we use the data types in our endpoints.
If False, we are client side and we need to include
oneOf and discriminator classes inside the data types in our endpoints
Returns:
(valid_classes, dict_valid_class_to_child_types_mixed):
valid_classes (tuple): the valid classes that the current item
should be
dict_valid_class_to_child_types_mixed (dict):
valid_class (class): this is the key
child_types_mixed (list/dict/tuple): describes the valid child
types
"""
valid_classes = []
child_req_types_by_current_type = {}
for required_type in required_types_mixed:
if isinstance(required_type, list):
valid_classes.append(list)
child_req_types_by_current_type[list] = required_type
elif isinstance(required_type, tuple):
valid_classes.append(tuple)
child_req_types_by_current_type[tuple] = required_type
elif isinstance(required_type, dict):
valid_classes.append(dict)
child_req_types_by_current_type[dict] = required_type[str]
else:
valid_classes.extend(get_possible_classes(required_type, spec_property_naming))
return tuple(valid_classes), child_req_types_by_current_type
def change_keys_js_to_python(input_dict, model_class):
"""
Converts from javascript_key keys in the input_dict to python_keys in
the output dict using the mapping in model_class.
If the input_dict contains a key which does not declared in the model_class,
the key is added to the output dict as is. The assumption is the model_class
may have undeclared properties (additionalProperties attribute in the OAS
document).
"""
if getattr(model_class, 'attribute_map', None) is None:
return input_dict
output_dict = {}
reversed_attr_map = {value: key for key, value in
model_class.attribute_map.items()}
for javascript_key, value in input_dict.items():
python_key = reversed_attr_map.get(javascript_key)
if python_key is None:
# if the key is unknown, it is in error or it is an
# additionalProperties variable
python_key = javascript_key
output_dict[python_key] = value
return output_dict
def get_type_error(var_value, path_to_item, valid_classes, key_type=False):
error_msg = type_error_message(
var_name=path_to_item[-1],
var_value=var_value,
valid_classes=valid_classes,
key_type=key_type
)
return ApiTypeError(
error_msg,
path_to_item=path_to_item,
valid_classes=valid_classes,
key_type=key_type
)
def deserialize_primitive(data, klass, path_to_item):
"""Deserializes string to primitive type.
:param data: str/int/float
:param klass: str/class the class to convert to
:return: int, float, str, bool, date, datetime
"""
additional_message = ""
try:
if klass in {datetime, date}:
additional_message = (
"If you need your parameter to have a fallback "
"string value, please set its type as `type: {}` in your "
"spec. That allows the value to be any type. "
)
if klass == datetime:
if len(data) < 8:
raise ValueError("This is not a datetime")
# The string should be in iso8601 datetime format.
parsed_datetime = parse(data)
date_only = (
parsed_datetime.hour == 0 and
parsed_datetime.minute == 0 and
parsed_datetime.second == 0 and
parsed_datetime.tzinfo is None and
8 <= len(data) <= 10
)
if date_only:
raise ValueError("This is a date, not a datetime")
return parsed_datetime
elif klass == date:
if len(data) < 8:
raise ValueError("This is not a date")
return parse(data).date()
else:
converted_value = klass(data)
if isinstance(data, str) and klass == float:
if str(converted_value) != data:
# '7' -> 7.0 -> '7.0' != '7'
raise ValueError('This is not a float')
return converted_value
except (OverflowError, ValueError) as ex:
# parse can raise OverflowError
raise ApiValueError(
"{0}Failed to parse {1} as {2}".format(
additional_message, repr(data), klass.__name__
),
path_to_item=path_to_item
) from ex
def get_discriminator_class(model_class,
discr_name,
discr_value, cls_visited):
"""Returns the child class specified by the discriminator.
Args:
model_class (OpenApiModel): the model class.
discr_name (string): the name of the discriminator property.
discr_value (any): the discriminator value.
cls_visited (list): list of model classes that have been visited.
Used to determine the discriminator class without
visiting circular references indefinitely.
Returns:
used_model_class (class/None): the chosen child class that will be used
to deserialize the data, for example dog.Dog.
If a class is not found, None is returned.
"""
if model_class in cls_visited:
# The class has already been visited and no suitable class was found.
return None
cls_visited.append(model_class)
used_model_class = None
if discr_name in model_class.discriminator:
class_name_to_discr_class = model_class.discriminator[discr_name]
used_model_class = class_name_to_discr_class.get(discr_value)
if used_model_class is None:
# We didn't find a discriminated class in class_name_to_discr_class.
# So look in the ancestor or descendant discriminators
# The discriminator mapping may exist in a descendant (anyOf, oneOf)
# or ancestor (allOf).
# Ancestor example: in the GrandparentAnimal -> ParentPet -> ChildCat
# hierarchy, the discriminator mappings may be defined at any level
# in the hierarchy.
# Descendant example: mammal -> whale/zebra/Pig -> BasquePig/DanishPig
# if we try to make BasquePig from mammal, we need to travel through
# the oneOf descendant discriminators to find BasquePig
descendant_classes = model_class._composed_schemas.get('oneOf', ()) + \
model_class._composed_schemas.get('anyOf', ())
ancestor_classes = model_class._composed_schemas.get('allOf', ())
possible_classes = descendant_classes + ancestor_classes
for cls in possible_classes:
# Check if the schema has inherited discriminators.
if hasattr(cls, 'discriminator') and cls.discriminator is not None:
used_model_class = get_discriminator_class(
cls, discr_name, discr_value, cls_visited)
if used_model_class is not None:
return used_model_class
return used_model_class
def deserialize_model(model_data, model_class, path_to_item, check_type,
configuration, spec_property_naming):
"""Deserializes model_data to model instance.
Args:
model_data (int/str/float/bool/none_type/list/dict): data to instantiate the model
model_class (OpenApiModel): the model class
path_to_item (list): path to the model in the received data
check_type (bool): whether to check the data tupe for the values in
the model
configuration (Configuration): the instance to use to convert files
spec_property_naming (bool): True if the variable names in the input
data are serialized names as specified in the OpenAPI document.
False if the variables names in the input data are python
variable names in PEP-8 snake case.
Returns:
model instance
Raise:
ApiTypeError
ApiValueError
ApiKeyError
"""
kw_args = dict(_check_type=check_type,
_path_to_item=path_to_item,
_configuration=configuration,
_spec_property_naming=spec_property_naming)
if issubclass(model_class, ModelSimple):
return model_class(model_data, **kw_args)
elif isinstance(model_data, list):
return model_class(*model_data, **kw_args)
if isinstance(model_data, dict):
kw_args.update(model_data)
return model_class(**kw_args)
elif isinstance(model_data, PRIMITIVE_TYPES):
return model_class(model_data, **kw_args)
def deserialize_file(response_data, configuration, content_disposition=None):
"""Deserializes body to file
Saves response body into a file in a temporary folder,
using the filename from the `Content-Disposition` header if provided.
Args:
param response_data (str): the file data to write
configuration (Configuration): the instance to use to convert files
Keyword Args:
content_disposition (str): the value of the Content-Disposition
header
Returns:
(file_type): the deserialized file which is open
The user is responsible for closing and reading the file
"""
fd, path = tempfile.mkstemp(dir=configuration.temp_folder_path)
os.close(fd)
os.remove(path)
if content_disposition:
filename = re.search(r'filename=[\'"]?([^\'"\s]+)[\'"]?',
content_disposition).group(1)
path = os.path.join(os.path.dirname(path), filename)
with open(path, "wb") as f:
if isinstance(response_data, str):
# change str to bytes so we can write it
response_data = response_data.encode('utf-8')
f.write(response_data)
f = open(path, "rb")
return f
def attempt_convert_item(input_value, valid_classes, path_to_item,
configuration, spec_property_naming, key_type=False,
must_convert=False, check_type=True):
"""
Args:
input_value (any): the data to convert
valid_classes (any): the classes that are valid
path_to_item (list): the path to the item to convert
configuration (Configuration): the instance to use to convert files
spec_property_naming (bool): True if the variable names in the input
data are serialized names as specified in the OpenAPI document.
False if the variables names in the input data are python
variable names in PEP-8 snake case.
key_type (bool): if True we need to convert a key type (not supported)
must_convert (bool): if True we must convert
check_type (bool): if True we check the type or the returned data in
ModelComposed/ModelNormal/ModelSimple instances
Returns:
instance (any) the fixed item
Raises:
ApiTypeError
ApiValueError
ApiKeyError
"""
valid_classes_ordered = order_response_types(valid_classes)
valid_classes_coercible = remove_uncoercible(
valid_classes_ordered, input_value, spec_property_naming)
if not valid_classes_coercible or key_type:
# we do not handle keytype errors, json will take care
# of this for us
if configuration is None or not configuration.discard_unknown_keys:
raise get_type_error(input_value, path_to_item, valid_classes,
key_type=key_type)
for valid_class in valid_classes_coercible:
try:
if issubclass(valid_class, OpenApiModel):
return deserialize_model(input_value, valid_class,
path_to_item, check_type,
configuration, spec_property_naming)
elif valid_class == file_type:
return deserialize_file(input_value, configuration)
return deserialize_primitive(input_value, valid_class,
path_to_item)
except (ApiTypeError, ApiValueError, ApiKeyError) as conversion_exc:
if must_convert:
raise conversion_exc
# if we have conversion errors when must_convert == False
# we ignore the exception and move on to the next class
continue
# we were unable to convert, must_convert == False
return input_value
def is_type_nullable(input_type):
"""
Returns true if None is an allowed value for the specified input_type.
A type is nullable if at least one of the following conditions is true:
1. The OAS 'nullable' attribute has been specified,
1. The type is the 'null' type,
1. The type is a anyOf/oneOf composed schema, and a child schema is
the 'null' type.
Args:
input_type (type): the class of the input_value that we are
checking
Returns:
bool
"""
if input_type is none_type:
return True
if issubclass(input_type, OpenApiModel) and input_type._nullable:
return True
if issubclass(input_type, ModelComposed):
# If oneOf/anyOf, check if the 'null' type is one of the allowed types.
for t in input_type._composed_schemas.get('oneOf', ()):
if is_type_nullable(t): return True
for t in input_type._composed_schemas.get('anyOf', ()):
if is_type_nullable(t): return True
return False
def is_valid_type(input_class_simple, valid_classes):
"""
Args:
input_class_simple (class): the class of the input_value that we are
checking
valid_classes (tuple): the valid classes that the current item
should be
Returns:
bool
"""
valid_type = input_class_simple in valid_classes
if not valid_type and (
issubclass(input_class_simple, OpenApiModel) or
input_class_simple is none_type):
for valid_class in valid_classes:
if input_class_simple is none_type and is_type_nullable(valid_class):
# Schema is oneOf/anyOf and the 'null' type is one of the allowed types.
return True
if not (issubclass(valid_class, OpenApiModel) and valid_class.discriminator):
continue
discr_propertyname_py = list(valid_class.discriminator.keys())[0]
discriminator_classes = (
valid_class.discriminator[discr_propertyname_py].values()
)
valid_type = is_valid_type(input_class_simple, discriminator_classes)
if valid_type:
return True
return valid_type
def validate_and_convert_types(input_value, required_types_mixed, path_to_item,
spec_property_naming, _check_type, configuration=None):
"""Raises a TypeError is there is a problem, otherwise returns value
Args:
input_value (any): the data to validate/convert
required_types_mixed (list/dict/tuple): A list of
valid classes, or a list tuples of valid classes, or a dict where
the value is a tuple of value classes
path_to_item: (list) the path to the data being validated
this stores a list of keys or indices to get to the data being
validated
spec_property_naming (bool): True if the variable names in the input
data are serialized names as specified in the OpenAPI document.
False if the variables names in the input data are python
variable names in PEP-8 snake case.
_check_type: (boolean) if true, type will be checked and conversion
will be attempted.
configuration: (Configuration): the configuration class to use
when converting file_type items.
If passed, conversion will be attempted when possible
If not passed, no conversions will be attempted and
exceptions will be raised
Returns:
the correctly typed value
Raises:
ApiTypeError
"""
results = get_required_type_classes(required_types_mixed, spec_property_naming)
valid_classes, child_req_types_by_current_type = results
input_class_simple = get_simple_class(input_value)
valid_type = is_valid_type(input_class_simple, valid_classes)
if not valid_type:
if configuration:
# if input_value is not valid_type try to convert it
converted_instance = attempt_convert_item(
input_value,
valid_classes,
path_to_item,
configuration,
spec_property_naming,
key_type=False,
must_convert=True,
check_type=_check_type
)
return converted_instance
else:
raise get_type_error(input_value, path_to_item, valid_classes,
key_type=False)
# input_value's type is in valid_classes
if len(valid_classes) > 1 and configuration:
# there are valid classes which are not the current class
valid_classes_coercible = remove_uncoercible(
valid_classes, input_value, spec_property_naming, must_convert=False)
if valid_classes_coercible:
converted_instance = attempt_convert_item(
input_value,
valid_classes_coercible,
path_to_item,
configuration,
spec_property_naming,
key_type=False,
must_convert=False,
check_type=_check_type
)
return converted_instance
if child_req_types_by_current_type == {}:
# all types are of the required types and there are no more inner
# variables left to look at
return input_value
inner_required_types = child_req_types_by_current_type.get(
type(input_value)
)
if inner_required_types is None:
# for this type, there are not more inner variables left to look at
return input_value
if isinstance(input_value, list):
if input_value == []:
# allow an empty list
return input_value
for index, inner_value in enumerate(input_value):
inner_path = list(path_to_item)
inner_path.append(index)
input_value[index] = validate_and_convert_types(
inner_value,
inner_required_types,
inner_path,
spec_property_naming,
_check_type,
configuration=configuration
)
elif isinstance(input_value, dict):
if input_value == {}:
# allow an empty dict
return input_value
for inner_key, inner_val in input_value.items():
inner_path = list(path_to_item)
inner_path.append(inner_key)
if get_simple_class(inner_key) != str:
raise get_type_error(inner_key, inner_path, valid_classes,
key_type=True)
input_value[inner_key] = validate_and_convert_types(
inner_val,
inner_required_types,
inner_path,
spec_property_naming,
_check_type,
configuration=configuration
)
return input_value
def model_to_dict(model_instance, serialize=True):
"""Returns the model properties as a dict
Args:
model_instance (one of your model instances): the model instance that
will be converted to a dict.
Keyword Args:
serialize (bool): if True, the keys in the dict will be values from
attribute_map
"""
result = {}
model_instances = [model_instance]
if model_instance._composed_schemas:
model_instances.extend(model_instance._composed_instances)
for model_instance in model_instances:
for attr, value in model_instance._data_store.items():
if serialize:
# we use get here because additional property key names do not
# exist in attribute_map
attr = model_instance.attribute_map.get(attr, attr)
if isinstance(value, list):
if not value or isinstance(value[0], PRIMITIVE_TYPES):
# empty list or primitive types
result[attr] = value
elif isinstance(value[0], ModelSimple):
result[attr] = [x.value for x in value]
else:
result[attr] = [model_to_dict(x, serialize=serialize) for x in value]
elif isinstance(value, dict):
result[attr] = dict(map(
lambda item: (item[0],
model_to_dict(item[1], serialize=serialize))
if hasattr(item[1], '_data_store') else item,
value.items()
))
elif isinstance(value, ModelSimple):
result[attr] = value.value
elif hasattr(value, '_data_store'):
result[attr] = model_to_dict(value, serialize=serialize)
else:
result[attr] = value
return result
def type_error_message(var_value=None, var_name=None, valid_classes=None,
key_type=None):
"""
Keyword Args:
var_value (any): the variable which has the type_error
var_name (str): the name of the variable which has the typ error
valid_classes (tuple): the accepted classes for current_item's
value
key_type (bool): False if our value is a value in a dict
True if it is a key in a dict
False if our item is an item in a list
"""
key_or_value = 'value'
if key_type:
key_or_value = 'key'
valid_classes_phrase = get_valid_classes_phrase(valid_classes)
msg = (
"Invalid type for variable '{0}'. Required {1} type {2} and "
"passed type was {3}".format(
var_name,
key_or_value,
valid_classes_phrase,
type(var_value).__name__,
)
)
return msg
def get_valid_classes_phrase(input_classes):
"""Returns a string phrase describing what types are allowed
"""
all_classes = list(input_classes)
all_classes = sorted(all_classes, key=lambda cls: cls.__name__)
all_class_names = [cls.__name__ for cls in all_classes]
if len(all_class_names) == 1:
return 'is {0}'.format(all_class_names[0])
return "is one of [{0}]".format(", ".join(all_class_names))
def convert_js_args_to_python_args(fn):
from functools import wraps
@wraps(fn)
def wrapped_init(self, *args, **kwargs):
spec_property_naming = kwargs.get('_spec_property_naming', False)
if spec_property_naming:
kwargs = change_keys_js_to_python(kwargs, self.__class__)
return fn(self, *args, **kwargs)
return wrapped_init
def get_allof_instances(self, model_args, constant_args):
"""
Args:
self: the class we are handling
model_args (dict): var_name to var_value
used to make instances
constant_args (dict): var_name to var_value
used to make instances
Returns
composed_instances (list)
"""
composed_instances = []
for allof_class in self._composed_schemas['allOf']:
# no need to handle changing js keys to python because
# for composed schemas, allof parameters are included in the
# composed schema and were changed to python keys in __new__
# extract a dict of only required keys from fixed_model_args
kwargs = {}
var_names = set(allof_class.openapi_types.keys())
for var_name in var_names:
if var_name in model_args:
kwargs[var_name] = model_args[var_name]
# and use it to make the instance
kwargs.update(constant_args)
try:
allof_instance = allof_class(**kwargs)
composed_instances.append(allof_instance)
except Exception as ex:
raise ApiValueError(
"Invalid inputs given to generate an instance of '%s'. The "
"input data was invalid for the allOf schema '%s' in the composed "
"schema '%s'. Error=%s" % (
allof_class.__name__,
allof_class.__name__,
self.__class__.__name__,
str(ex)
)
) from ex
return composed_instances
def get_oneof_instance(cls, model_kwargs, constant_kwargs, model_arg=None):
"""
Find the oneOf schema that matches the input data (e.g. payload).
If exactly one schema matches the input data, an instance of that schema
is returned.
If zero or more than one schema match the input data, an exception is raised.
In OAS 3.x, the payload MUST, by validation, match exactly one of the
schemas described by oneOf.
Args:
cls: the class we are handling
model_kwargs (dict): var_name to var_value
The input data, e.g. the payload that must match a oneOf schema
in the OpenAPI document.
constant_kwargs (dict): var_name to var_value
args that every model requires, including configuration, server
and path to item.
Kwargs:
model_arg: (int, float, bool, str, date, datetime, ModelSimple, None):
the value to assign to a primitive class or ModelSimple class
Notes:
- this is only passed in when oneOf includes types which are not object
- None is used to suppress handling of model_arg, nullable models are handled in __new__
Returns
oneof_instance (instance)
"""
if len(cls._composed_schemas['oneOf']) == 0:
return None
oneof_instances = []
# Iterate over each oneOf schema and determine if the input data
# matches the oneOf schemas.
for oneof_class in cls._composed_schemas['oneOf']:
# The composed oneOf schema allows the 'null' type and the input data
# is the null value. This is a OAS >= 3.1 feature.
if oneof_class is none_type:
# skip none_types because we are deserializing dict data.
# none_type deserialization is handled in the __new__ method
continue
single_value_input = allows_single_value_input(oneof_class)
if not single_value_input:
# transform js keys from input data to python keys in fixed_model_args
fixed_model_args = change_keys_js_to_python(
model_kwargs, oneof_class)
# Extract a dict with the properties that are declared in the oneOf schema.
# Undeclared properties (e.g. properties that are allowed because of the
# additionalProperties attribute in the OAS document) are not added to
# the dict.
kwargs = {}
var_names = set(oneof_class.openapi_types.keys())
for var_name in var_names:
if var_name in fixed_model_args:
kwargs[var_name] = fixed_model_args[var_name]
# do not try to make a model with no input args
if len(kwargs) == 0:
continue
# and use it to make the instance
kwargs.update(constant_kwargs)
try:
if not single_value_input:
oneof_instance = oneof_class(**kwargs)
else:
if issubclass(oneof_class, ModelSimple):
oneof_instance = oneof_class(model_arg, **constant_kwargs)
elif oneof_class in PRIMITIVE_TYPES:
oneof_instance = validate_and_convert_types(
model_arg,
(oneof_class,),
constant_kwargs['_path_to_item'],
constant_kwargs['_spec_property_naming'],
constant_kwargs['_check_type'],
configuration=constant_kwargs['_configuration']
)
oneof_instances.append(oneof_instance)
except Exception:
pass
if len(oneof_instances) == 0:
raise ApiValueError(
"Invalid inputs given to generate an instance of %s. None "
"of the oneOf schemas matched the input data." %
cls.__name__
)
elif len(oneof_instances) > 1:
raise ApiValueError(
"Invalid inputs given to generate an instance of %s. Multiple "
"oneOf schemas matched the inputs, but a max of one is allowed." %
cls.__name__
)
return oneof_instances[0]
def get_anyof_instances(self, model_args, constant_args):
"""
Args:
self: the class we are handling
model_args (dict): var_name to var_value
The input data, e.g. the payload that must match at least one
anyOf child schema in the OpenAPI document.
constant_args (dict): var_name to var_value
args that every model requires, including configuration, server
and path to item.
Returns
anyof_instances (list)
"""
anyof_instances = []
if len(self._composed_schemas['anyOf']) == 0:
return anyof_instances
for anyof_class in self._composed_schemas['anyOf']:
# The composed oneOf schema allows the 'null' type and the input data
# is the null value. This is a OAS >= 3.1 feature.
if anyof_class is none_type:
# skip none_types because we are deserializing dict data.
# none_type deserialization is handled in the __new__ method
continue
# transform js keys to python keys in fixed_model_args
fixed_model_args = change_keys_js_to_python(model_args, anyof_class)
# extract a dict of only required keys from these_model_vars
kwargs = {}
var_names = set(anyof_class.openapi_types.keys())
for var_name in var_names:
if var_name in fixed_model_args:
kwargs[var_name] = fixed_model_args[var_name]
# do not try to make a model with no input args
if len(kwargs) == 0:
continue
# and use it to make the instance
kwargs.update(constant_args)
try:
anyof_instance = anyof_class(**kwargs)
anyof_instances.append(anyof_instance)
except Exception:
pass
if len(anyof_instances) == 0:
raise ApiValueError(
"Invalid inputs given to generate an instance of %s. None of the "
"anyOf schemas matched the inputs." %
self.__class__.__name__
)
return anyof_instances
def get_additional_properties_model_instances(
composed_instances, self):
additional_properties_model_instances = []
all_instances = [self]
all_instances.extend(composed_instances)
for instance in all_instances:
if instance.additional_properties_type is not None:
additional_properties_model_instances.append(instance)
return additional_properties_model_instances
def get_var_name_to_model_instances(self, composed_instances):
var_name_to_model_instances = {}
all_instances = [self]
all_instances.extend(composed_instances)
for instance in all_instances:
for var_name in instance.openapi_types:
if var_name not in var_name_to_model_instances:
var_name_to_model_instances[var_name] = [instance]
else:
var_name_to_model_instances[var_name].append(instance)
return var_name_to_model_instances
def get_unused_args(self, composed_instances, model_args):
unused_args = dict(model_args)
# arguments apssed to self were already converted to python names
# before __init__ was called
for var_name_py in self.attribute_map:
if var_name_py in unused_args:
del unused_args[var_name_py]
for instance in composed_instances:
if instance.__class__ in self._composed_schemas['allOf']:
for var_name_py in instance.attribute_map:
if var_name_py in unused_args:
del unused_args[var_name_py]
else:
for var_name_js in instance.attribute_map.values():
if var_name_js in unused_args:
del unused_args[var_name_js]
return unused_args
def validate_get_composed_info(constant_args, model_args, self):
"""
For composed schemas, generate schema instances for
all schemas in the oneOf/anyOf/allOf definition. If additional
properties are allowed, also assign those properties on
all matched schemas that contain additionalProperties.
Openapi schemas are python classes.
Exceptions are raised if:
- 0 or > 1 oneOf schema matches the model_args input data
- no anyOf schema matches the model_args input data
- any of the allOf schemas do not match the model_args input data
Args:
constant_args (dict): these are the args that every model requires
model_args (dict): these are the required and optional spec args that
were passed in to make this model
self (class): the class that we are instantiating
This class contains self._composed_schemas
Returns:
composed_info (list): length three
composed_instances (list): the composed instances which are not
self
var_name_to_model_instances (dict): a dict going from var_name
to the model_instance which holds that var_name
the model_instance may be self or an instance of one of the
classes in self.composed_instances()
additional_properties_model_instances (list): a list of the
model instances which have the property
additional_properties_type. This list can include self
"""
# create composed_instances
composed_instances = []
allof_instances = get_allof_instances(self, model_args, constant_args)
composed_instances.extend(allof_instances)
oneof_instance = get_oneof_instance(self.__class__, model_args, constant_args)
if oneof_instance is not None:
composed_instances.append(oneof_instance)
anyof_instances = get_anyof_instances(self, model_args, constant_args)
composed_instances.extend(anyof_instances)
# map variable names to composed_instances
var_name_to_model_instances = get_var_name_to_model_instances(
self, composed_instances)
# set additional_properties_model_instances
additional_properties_model_instances = (
get_additional_properties_model_instances(composed_instances, self)
)
# set any remaining values
unused_args = get_unused_args(self, composed_instances, model_args)
if len(unused_args) > 0 and \
len(additional_properties_model_instances) == 0 and \
(self._configuration is None or
not self._configuration.discard_unknown_keys):
raise ApiValueError(
"Invalid input arguments input when making an instance of "
"class %s. Not all inputs were used. The unused input data "
"is %s" % (self.__class__.__name__, unused_args)
)
# no need to add additional_properties to var_name_to_model_instances here
# because additional_properties_model_instances will direct us to that
# instance when we use getattr or setattr
# and we update var_name_to_model_instances in setattr
return [
composed_instances,
var_name_to_model_instances,
additional_properties_model_instances,
unused_args
]