All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.uci.ics.jung.algorithms.blockmodel.StructurallyEquivalent Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 2004, the JUNG Project and the Regents of the University 
 * of California
 * All rights reserved.
 * Created on Jan 28, 2004
 *
 * This software is open-source under the BSD license; see either
 * "license.txt" or
 * http://jung.sourceforge.net/license.txt for a description.
 */
package edu.uci.ics.jung.algorithms.blockmodel;

import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Set;

import org.apache.commons.collections15.CollectionUtils;
import org.apache.commons.collections15.Transformer;

import edu.uci.ics.jung.graph.Graph;
import edu.uci.ics.jung.graph.util.Pair;

/**
 * Identifies sets of structurally equivalent vertices in a graph. Vertices 
 * i and j are structurally equivalent iff the set of i's
 * neighbors is identical to the set of j's neighbors, with the
 * exception of i and j themselves. This algorithm finds all
 * sets of equivalent vertices in O(V^2) time.
 * 
 * 

You can extend this class to have a different definition of equivalence (by * overriding isStructurallyEquivalent), and may give it hints for * accelerating the process by overriding canPossiblyCompare. * (For example, in a bipartite graph, canPossiblyCompare may * return false for vertices in * different partitions. This function should be fast.) * * @author Danyel Fisher */ public class StructurallyEquivalent implements Transformer, VertexPartition> { public VertexPartition transform(Graph g) { Set> vertex_pairs = getEquivalentPairs(g); Set> rv = new HashSet>(); Map> intermediate = new HashMap>(); for (Pair p : vertex_pairs) { Set res = intermediate.get(p.getFirst()); if (res == null) res = intermediate.get(p.getSecond()); if (res == null) // we haven't seen this one before res = new HashSet(); res.add(p.getFirst()); res.add(p.getSecond()); intermediate.put(p.getFirst(), res); intermediate.put(p.getSecond(), res); } rv.addAll(intermediate.values()); // pick up the vertices which don't appear in intermediate; they are // singletons (equivalence classes of size 1) Collection singletons = CollectionUtils.subtract(g.getVertices(), intermediate.keySet()); for (V v : singletons) { Set v_set = Collections.singleton(v); intermediate.put(v, v_set); rv.add(v_set); } return new VertexPartition(g, intermediate, rv); } /** * For each vertex pair v, v1 in G, checks whether v and v1 are fully * equivalent: meaning that they connect to the exact same vertices. (Is * this regular equivalence, or whathaveyou?) * * Returns a Set of Pairs of vertices, where all the vertices in the inner * Pairs are equivalent. * * @param g */ protected Set> getEquivalentPairs(Graph g) { Set> rv = new HashSet>(); Set alreadyEquivalent = new HashSet(); List l = new ArrayList(g.getVertices()); for (V v1 : l) { if (alreadyEquivalent.contains(v1)) continue; for (Iterator iterator = l.listIterator(l.indexOf(v1) + 1); iterator.hasNext();) { V v2 = iterator.next(); if (alreadyEquivalent.contains(v2)) continue; if (!canPossiblyCompare(v1, v2)) continue; if (isStructurallyEquivalent(g, v1, v2)) { Pair p = new Pair(v1, v2); alreadyEquivalent.add(v2); rv.add(p); } } } return rv; } /** * Checks whether a pair of vertices are structurally equivalent. * Specifically, whether v1's predecessors are equal to v2's predecessors, * and same for successors. * * @param g the graph in which the structural equivalence comparison is to take place * @param v1 the vertex to check for structural equivalence to v2 * @param v2 the vertex to check for structural equivalence to v1 */ protected boolean isStructurallyEquivalent(Graph g, V v1, V v2) { if( g.degree(v1) != g.degree(v2)) { return false; } Set n1 = new HashSet(g.getPredecessors(v1)); n1.remove(v2); n1.remove(v1); Set n2 = new HashSet(g.getPredecessors(v2)); n2.remove(v1); n2.remove(v2); Set o1 = new HashSet(g.getSuccessors(v1)); Set o2 = new HashSet(g.getSuccessors(v2)); o1.remove(v1); o1.remove(v2); o2.remove(v1); o2.remove(v2); // this neglects self-loops and directed edges from 1 to other boolean b = (n1.equals(n2) && o1.equals(o2)); if (!b) return b; // if there's a directed edge v1->v2 then there's a directed edge v2->v1 b &= ( g.isSuccessor(v1, v2) == g.isSuccessor(v2, v1)); // self-loop check b &= ( g.isSuccessor(v1, v1) == g.isSuccessor(v2, v2)); return b; } /** * This is a space for optimizations. For example, for a bipartite graph, * vertices from different partitions cannot possibly be compared. * * @param v1 * @param v2 */ protected boolean canPossiblyCompare(V v1, V v2) { return true; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy