org.opendaylight.controller.cluster.datastore.ShardDataTree Maven / Gradle / Ivy
/*
* Copyright (c) 2015 Cisco Systems, Inc. and others. All rights reserved.
*
* This program and the accompanying materials are made available under the
* terms of the Eclipse Public License v1.0 which accompanies this distribution,
* and is available at http://www.eclipse.org/legal/epl-v10.html
*/
package org.opendaylight.controller.cluster.datastore;
import static akka.actor.ActorRef.noSender;
import static com.google.common.base.Preconditions.checkState;
import static com.google.common.base.Verify.verify;
import static com.google.common.base.Verify.verifyNotNull;
import static java.util.Objects.requireNonNull;
import static java.util.Objects.requireNonNullElse;
import akka.actor.ActorRef;
import akka.util.Timeout;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.base.Stopwatch;
import com.google.common.collect.ImmutableList;
import com.google.common.collect.ImmutableMap;
import com.google.common.collect.ImmutableMap.Builder;
import com.google.common.collect.Iterables;
import com.google.common.primitives.UnsignedLong;
import com.google.common.util.concurrent.FutureCallback;
import edu.umd.cs.findbugs.annotations.SuppressFBWarnings;
import java.io.File;
import java.io.IOException;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.Deque;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Map.Entry;
import java.util.Optional;
import java.util.OptionalLong;
import java.util.Queue;
import java.util.SortedSet;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
import java.util.function.Consumer;
import java.util.function.Function;
import java.util.function.UnaryOperator;
import org.eclipse.jdt.annotation.NonNull;
import org.eclipse.jdt.annotation.Nullable;
import org.opendaylight.controller.cluster.access.concepts.LocalHistoryIdentifier;
import org.opendaylight.controller.cluster.access.concepts.TransactionIdentifier;
import org.opendaylight.controller.cluster.datastore.DataTreeCohortActorRegistry.CohortRegistryCommand;
import org.opendaylight.controller.cluster.datastore.ShardDataTreeCohort.State;
import org.opendaylight.controller.cluster.datastore.node.utils.transformer.ReusableNormalizedNodePruner;
import org.opendaylight.controller.cluster.datastore.persisted.AbortTransactionPayload;
import org.opendaylight.controller.cluster.datastore.persisted.AbstractIdentifiablePayload;
import org.opendaylight.controller.cluster.datastore.persisted.CloseLocalHistoryPayload;
import org.opendaylight.controller.cluster.datastore.persisted.CommitTransactionPayload;
import org.opendaylight.controller.cluster.datastore.persisted.CreateLocalHistoryPayload;
import org.opendaylight.controller.cluster.datastore.persisted.DataTreeCandidateInputOutput.DataTreeCandidateWithVersion;
import org.opendaylight.controller.cluster.datastore.persisted.MetadataShardDataTreeSnapshot;
import org.opendaylight.controller.cluster.datastore.persisted.PayloadVersion;
import org.opendaylight.controller.cluster.datastore.persisted.PurgeLocalHistoryPayload;
import org.opendaylight.controller.cluster.datastore.persisted.PurgeTransactionPayload;
import org.opendaylight.controller.cluster.datastore.persisted.ShardDataTreeSnapshot;
import org.opendaylight.controller.cluster.datastore.persisted.ShardDataTreeSnapshotMetadata;
import org.opendaylight.controller.cluster.datastore.persisted.ShardSnapshotState;
import org.opendaylight.controller.cluster.datastore.persisted.SkipTransactionsPayload;
import org.opendaylight.controller.cluster.datastore.utils.DataTreeModificationOutput;
import org.opendaylight.controller.cluster.datastore.utils.ImmutableUnsignedLongSet;
import org.opendaylight.controller.cluster.datastore.utils.PruningDataTreeModification;
import org.opendaylight.controller.cluster.raft.base.messages.InitiateCaptureSnapshot;
import org.opendaylight.controller.cluster.raft.messages.Payload;
import org.opendaylight.mdsal.common.api.OptimisticLockFailedException;
import org.opendaylight.mdsal.common.api.TransactionCommitFailedException;
import org.opendaylight.mdsal.dom.api.DOMDataTreeChangeListener;
import org.opendaylight.yangtools.concepts.Identifier;
import org.opendaylight.yangtools.concepts.ListenerRegistration;
import org.opendaylight.yangtools.yang.common.Empty;
import org.opendaylight.yangtools.yang.data.api.YangInstanceIdentifier;
import org.opendaylight.yangtools.yang.data.api.schema.NormalizedNode;
import org.opendaylight.yangtools.yang.data.codec.binfmt.NormalizedNodeStreamVersion;
import org.opendaylight.yangtools.yang.data.tree.api.ConflictingModificationAppliedException;
import org.opendaylight.yangtools.yang.data.tree.api.DataTree;
import org.opendaylight.yangtools.yang.data.tree.api.DataTreeCandidate;
import org.opendaylight.yangtools.yang.data.tree.api.DataTreeCandidateTip;
import org.opendaylight.yangtools.yang.data.tree.api.DataTreeConfiguration;
import org.opendaylight.yangtools.yang.data.tree.api.DataTreeModification;
import org.opendaylight.yangtools.yang.data.tree.api.DataTreeSnapshot;
import org.opendaylight.yangtools.yang.data.tree.api.DataTreeTip;
import org.opendaylight.yangtools.yang.data.tree.api.DataValidationFailedException;
import org.opendaylight.yangtools.yang.data.tree.api.ModificationType;
import org.opendaylight.yangtools.yang.data.tree.api.TreeType;
import org.opendaylight.yangtools.yang.data.tree.impl.di.InMemoryDataTreeFactory;
import org.opendaylight.yangtools.yang.data.tree.spi.DataTreeCandidates;
import org.opendaylight.yangtools.yang.data.util.DataSchemaContextTree;
import org.opendaylight.yangtools.yang.model.api.EffectiveModelContext;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import scala.concurrent.duration.FiniteDuration;
/**
* Internal shard state, similar to a DOMStore, but optimized for use in the actor system, e.g. it does not expose
* public interfaces and assumes it is only ever called from a single thread.
*
*
* This class is not part of the API contract and is subject to change at any time. It is NOT thread-safe.
*/
@VisibleForTesting
// non-final for mocking
public class ShardDataTree extends ShardDataTreeTransactionParent {
private static final class CommitEntry {
final SimpleShardDataTreeCohort cohort;
long lastAccess;
CommitEntry(final SimpleShardDataTreeCohort cohort, final long now) {
this.cohort = requireNonNull(cohort);
lastAccess = now;
}
@Override
public String toString() {
return "CommitEntry [tx=" + cohort.getIdentifier() + ", state=" + cohort.getState() + "]";
}
}
private static final Timeout COMMIT_STEP_TIMEOUT = new Timeout(FiniteDuration.create(5, TimeUnit.SECONDS));
private static final Logger LOG = LoggerFactory.getLogger(ShardDataTree.class);
/**
* Process this many transactions in a single batched run. If we exceed this limit, we need to schedule later
* execution to finish up the batch. This is necessary in case of a long list of transactions which progress
* immediately through their preCommit phase -- if that happens, their completion eats up stack frames and could
* result in StackOverflowError.
*/
private static final int MAX_TRANSACTION_BATCH = 100;
private final Map transactionChains = new HashMap<>();
private final DataTreeCohortActorRegistry cohortRegistry = new DataTreeCohortActorRegistry();
private final Deque pendingTransactions = new ArrayDeque<>();
private final Queue pendingCommits = new ArrayDeque<>();
private final Queue pendingFinishCommits = new ArrayDeque<>();
/**
* Callbacks that need to be invoked once a payload is replicated.
*/
private final Map replicationCallbacks = new HashMap<>();
private final ShardDataTreeChangeListenerPublisher treeChangeListenerPublisher;
private final Collection> metadata;
private final DataTree dataTree;
private final String logContext;
private final Shard shard;
private Runnable runOnPendingTransactionsComplete;
/**
* Optimistic {@link DataTreeCandidate} preparation. Since our DataTree implementation is a
* {@link DataTree}, each {@link DataTreeCandidate} is also a {@link DataTreeTip}, e.g. another
* candidate can be prepared on top of it. They still need to be committed in sequence. Here we track the current
* tip of the data tree, which is the last DataTreeCandidate we have in flight, or the DataTree itself.
*/
private DataTreeTip tip;
private EffectiveModelContext schemaContext;
private DataSchemaContextTree dataSchemaContext;
private int currentTransactionBatch;
ShardDataTree(final Shard shard, final EffectiveModelContext schemaContext, final DataTree dataTree,
final ShardDataTreeChangeListenerPublisher treeChangeListenerPublisher,
final String logContext,
final ShardDataTreeMetadata>... metadata) {
this.dataTree = requireNonNull(dataTree);
updateSchemaContext(schemaContext);
this.shard = requireNonNull(shard);
this.treeChangeListenerPublisher = requireNonNull(treeChangeListenerPublisher);
this.logContext = requireNonNull(logContext);
this.metadata = ImmutableList.copyOf(metadata);
tip = dataTree;
}
ShardDataTree(final Shard shard, final EffectiveModelContext schemaContext, final TreeType treeType,
final YangInstanceIdentifier root,
final ShardDataTreeChangeListenerPublisher treeChangeListenerPublisher,
final String logContext,
final ShardDataTreeMetadata>... metadata) {
this(shard, schemaContext, createDataTree(treeType, root), treeChangeListenerPublisher, logContext, metadata);
}
private static DataTree createDataTree(final TreeType treeType, final YangInstanceIdentifier root) {
final DataTreeConfiguration baseConfig = DataTreeConfiguration.getDefault(treeType);
return new InMemoryDataTreeFactory().create(new DataTreeConfiguration.Builder(baseConfig.getTreeType())
.setMandatoryNodesValidation(baseConfig.isMandatoryNodesValidationEnabled())
.setUniqueIndexes(baseConfig.isUniqueIndexEnabled())
.setRootPath(root)
.build());
}
@VisibleForTesting
public ShardDataTree(final Shard shard, final EffectiveModelContext schemaContext, final TreeType treeType) {
this(shard, schemaContext, treeType, YangInstanceIdentifier.of(),
new DefaultShardDataTreeChangeListenerPublisher(""), "");
}
final String logContext() {
return logContext;
}
final long readTime() {
return shard.ticker().read();
}
final DataTree getDataTree() {
return dataTree;
}
@VisibleForTesting
final EffectiveModelContext getSchemaContext() {
return schemaContext;
}
final void updateSchemaContext(final @NonNull EffectiveModelContext newSchemaContext) {
dataTree.setEffectiveModelContext(newSchemaContext);
schemaContext = newSchemaContext;
dataSchemaContext = DataSchemaContextTree.from(newSchemaContext);
}
final void resetTransactionBatch() {
currentTransactionBatch = 0;
}
/**
* Take a snapshot of current state for later recovery.
*
* @return A state snapshot
*/
@NonNull ShardDataTreeSnapshot takeStateSnapshot() {
final NormalizedNode rootNode = takeSnapshot().readNode(YangInstanceIdentifier.of()).orElseThrow();
final Builder>, ShardDataTreeSnapshotMetadata>> metaBuilder =
ImmutableMap.builder();
for (ShardDataTreeMetadata> m : metadata) {
final ShardDataTreeSnapshotMetadata> meta = m.toSnapshot();
if (meta != null) {
metaBuilder.put(meta.getType(), meta);
}
}
return new MetadataShardDataTreeSnapshot(rootNode, metaBuilder.build());
}
private boolean anyPendingTransactions() {
return !pendingTransactions.isEmpty() || !pendingCommits.isEmpty() || !pendingFinishCommits.isEmpty();
}
private void applySnapshot(final @NonNull ShardDataTreeSnapshot snapshot,
final UnaryOperator wrapper) throws DataValidationFailedException {
final Stopwatch elapsed = Stopwatch.createStarted();
if (anyPendingTransactions()) {
LOG.warn("{}: applying state snapshot with pending transactions", logContext);
}
final Map>, ShardDataTreeSnapshotMetadata>> snapshotMeta;
if (snapshot instanceof MetadataShardDataTreeSnapshot metaSnapshot) {
snapshotMeta = metaSnapshot.getMetadata();
} else {
snapshotMeta = ImmutableMap.of();
}
for (var m : metadata) {
final var s = snapshotMeta.get(m.getSupportedType());
if (s != null) {
m.applySnapshot(s);
} else {
m.reset();
}
}
final DataTreeModification unwrapped = newModification();
final DataTreeModification mod = wrapper.apply(unwrapped);
// delete everything first
mod.delete(YangInstanceIdentifier.of());
snapshot.getRootNode().ifPresent(rootNode -> {
// Add everything from the remote node back
mod.write(YangInstanceIdentifier.of(), rootNode);
});
mod.ready();
dataTree.validate(unwrapped);
DataTreeCandidateTip candidate = dataTree.prepare(unwrapped);
dataTree.commit(candidate);
notifyListeners(candidate);
LOG.debug("{}: state snapshot applied in {}", logContext, elapsed);
}
/**
* Apply a snapshot coming from the leader. This method assumes the leader and follower SchemaContexts match and
* does not perform any pruning.
*
* @param snapshot Snapshot that needs to be applied
* @throws DataValidationFailedException when the snapshot fails to apply
*/
final void applySnapshot(final @NonNull ShardDataTreeSnapshot snapshot) throws DataValidationFailedException {
// TODO: we should be taking ShardSnapshotState here and performing forward-compatibility translation
applySnapshot(snapshot, UnaryOperator.identity());
}
/**
* Apply a snapshot coming from recovery. This method does not assume the SchemaContexts match and performs data
* pruning in an attempt to adjust the state to our current SchemaContext.
*
* @param snapshot Snapshot that needs to be applied
* @throws DataValidationFailedException when the snapshot fails to apply
*/
final void applyRecoverySnapshot(final @NonNull ShardSnapshotState snapshot) throws DataValidationFailedException {
// TODO: we should be able to reuse the pruner, provided we are not reentrant
final ReusableNormalizedNodePruner pruner = ReusableNormalizedNodePruner.forDataSchemaContext(
dataSchemaContext);
if (snapshot.needsMigration()) {
final ReusableNormalizedNodePruner uintPruner = pruner.withUintAdaption();
applySnapshot(snapshot.getSnapshot(),
delegate -> new PruningDataTreeModification.Proactive(delegate, dataTree, uintPruner));
} else {
applySnapshot(snapshot.getSnapshot(),
delegate -> new PruningDataTreeModification.Reactive(delegate, dataTree, pruner));
}
}
@SuppressWarnings("checkstyle:IllegalCatch")
private void applyRecoveryCandidate(final CommitTransactionPayload payload) throws IOException {
final Entry entry = payload.acquireCandidate();
final DataTreeModification unwrapped = newModification();
final PruningDataTreeModification mod = createPruningModification(unwrapped,
NormalizedNodeStreamVersion.MAGNESIUM.compareTo(entry.getValue().version()) > 0);
DataTreeCandidates.applyToModification(mod, entry.getValue().candidate());
mod.ready();
LOG.trace("{}: Applying recovery modification {}", logContext, unwrapped);
try {
dataTree.validate(unwrapped);
dataTree.commit(dataTree.prepare(unwrapped));
} catch (Exception e) {
File file = new File(System.getProperty("karaf.data", "."),
"failed-recovery-payload-" + logContext + ".out");
DataTreeModificationOutput.toFile(file, unwrapped);
throw new IllegalStateException(String.format(
"%s: Failed to apply recovery payload. Modification data was written to file %s",
logContext, file), e);
}
allMetadataCommittedTransaction(entry.getKey());
}
private PruningDataTreeModification createPruningModification(final DataTreeModification unwrapped,
final boolean uintAdapting) {
// TODO: we should be able to reuse the pruner, provided we are not reentrant
final ReusableNormalizedNodePruner pruner = ReusableNormalizedNodePruner.forDataSchemaContext(
dataSchemaContext);
return uintAdapting ? new PruningDataTreeModification.Proactive(unwrapped, dataTree, pruner.withUintAdaption())
: new PruningDataTreeModification.Reactive(unwrapped, dataTree, pruner);
}
/**
* Apply a payload coming from recovery. This method does not assume the SchemaContexts match and performs data
* pruning in an attempt to adjust the state to our current SchemaContext.
*
* @param payload Payload
* @throws IOException when the snapshot fails to deserialize
* @throws DataValidationFailedException when the snapshot fails to apply
*/
final void applyRecoveryPayload(final @NonNull Payload payload) throws IOException {
if (payload instanceof CommitTransactionPayload commit) {
applyRecoveryCandidate(commit);
} else if (payload instanceof AbortTransactionPayload abort) {
allMetadataAbortedTransaction(abort.getIdentifier());
} else if (payload instanceof PurgeTransactionPayload purge) {
allMetadataPurgedTransaction(purge.getIdentifier());
} else if (payload instanceof CreateLocalHistoryPayload create) {
allMetadataCreatedLocalHistory(create.getIdentifier());
} else if (payload instanceof CloseLocalHistoryPayload close) {
allMetadataClosedLocalHistory(close.getIdentifier());
} else if (payload instanceof PurgeLocalHistoryPayload purge) {
allMetadataPurgedLocalHistory(purge.getIdentifier());
} else if (payload instanceof SkipTransactionsPayload skip) {
allMetadataSkipTransactions(skip);
} else {
LOG.debug("{}: ignoring unhandled payload {}", logContext, payload);
}
}
private void applyReplicatedCandidate(final CommitTransactionPayload payload)
throws DataValidationFailedException, IOException {
final Entry entry = payload.acquireCandidate();
final TransactionIdentifier identifier = entry.getKey();
LOG.debug("{}: Applying foreign transaction {}", logContext, identifier);
final DataTreeModification mod = newModification();
// TODO: check version here, which will enable us to perform forward-compatibility transformations
DataTreeCandidates.applyToModification(mod, entry.getValue().candidate());
mod.ready();
LOG.trace("{}: Applying foreign modification {}", logContext, mod);
dataTree.validate(mod);
final DataTreeCandidate candidate = dataTree.prepare(mod);
dataTree.commit(candidate);
allMetadataCommittedTransaction(identifier);
notifyListeners(candidate);
}
/**
* Apply a payload coming from the leader, which could actually be us. This method assumes the leader and follower
* SchemaContexts match and does not perform any pruning.
*
* @param identifier Payload identifier as returned from RaftActor
* @param payload Payload
* @throws IOException when the snapshot fails to deserialize
* @throws DataValidationFailedException when the snapshot fails to apply
*/
final void applyReplicatedPayload(final Identifier identifier, final Payload payload) throws IOException,
DataValidationFailedException {
/*
* This is a bit more involved than it needs to be due to to the fact we do not want to be touching the payload
* if we are the leader and it has originated with us.
*
* The identifier will only ever be non-null when we were the leader which achieved consensus. Unfortunately,
* though, this may not be the case anymore, as we are being called some time afterwards and we may not be
* acting in that capacity anymore.
*
* In any case, we know that this is an entry coming from replication, hence we can be sure we will not observe
* pre-Boron state -- which limits the number of options here.
*/
if (payload instanceof CommitTransactionPayload commit) {
if (identifier == null) {
applyReplicatedCandidate(commit);
} else {
verify(identifier instanceof TransactionIdentifier);
// if we did not track this transaction before, it means that it came from another leader and we are in
// the process of commiting it while in PreLeader state. That means that it hasnt yet been committed to
// the local DataTree and would be lost if it was only applied via payloadReplicationComplete().
if (!payloadReplicationComplete((TransactionIdentifier) identifier)) {
applyReplicatedCandidate(commit);
}
}
// make sure acquireCandidate() is the last call touching the payload data as we want it to be GC-ed.
checkRootOverwrite(((CommitTransactionPayload) payload).acquireCandidate().getValue().candidate());
} else if (payload instanceof AbortTransactionPayload abort) {
if (identifier != null) {
payloadReplicationComplete(abort);
}
allMetadataAbortedTransaction(abort.getIdentifier());
} else if (payload instanceof PurgeTransactionPayload purge) {
if (identifier != null) {
payloadReplicationComplete(purge);
}
allMetadataPurgedTransaction(purge.getIdentifier());
} else if (payload instanceof CloseLocalHistoryPayload close) {
if (identifier != null) {
payloadReplicationComplete(close);
}
allMetadataClosedLocalHistory(close.getIdentifier());
} else if (payload instanceof CreateLocalHistoryPayload create) {
if (identifier != null) {
payloadReplicationComplete(create);
}
allMetadataCreatedLocalHistory(create.getIdentifier());
} else if (payload instanceof PurgeLocalHistoryPayload purge) {
if (identifier != null) {
payloadReplicationComplete(purge);
}
allMetadataPurgedLocalHistory(purge.getIdentifier());
} else if (payload instanceof SkipTransactionsPayload skip) {
if (identifier != null) {
payloadReplicationComplete(skip);
}
allMetadataSkipTransactions(skip);
} else {
LOG.warn("{}: ignoring unhandled identifier {} payload {}", logContext, identifier, payload);
}
}
private void checkRootOverwrite(final DataTreeCandidate candidate) {
final DatastoreContext datastoreContext = shard.getDatastoreContext();
if (!datastoreContext.isSnapshotOnRootOverwrite()) {
return;
}
if (!datastoreContext.isPersistent()) {
// FIXME: why don't we want a snapshot in non-persistent state?
return;
}
// top level container ie "/"
if (candidate.getRootPath().isEmpty() && candidate.getRootNode().modificationType() == ModificationType.WRITE) {
LOG.debug("{}: shard root overwritten, enqueuing snapshot", logContext);
shard.self().tell(new InitiateCaptureSnapshot(), noSender());
}
}
private void replicatePayload(final Identifier id, final Payload payload, final @Nullable Runnable callback) {
if (callback != null) {
replicationCallbacks.put(payload, callback);
}
shard.persistPayload(id, payload, true);
}
private void payloadReplicationComplete(final AbstractIdentifiablePayload> payload) {
final Runnable callback = replicationCallbacks.remove(payload);
if (callback != null) {
LOG.debug("{}: replication of {} completed, invoking {}", logContext, payload.getIdentifier(), callback);
callback.run();
} else {
LOG.debug("{}: replication of {} has no callback", logContext, payload.getIdentifier());
}
}
private boolean payloadReplicationComplete(final TransactionIdentifier txId) {
final CommitEntry current = pendingFinishCommits.peek();
if (current == null) {
LOG.warn("{}: No outstanding transactions, ignoring consensus on transaction {}", logContext, txId);
allMetadataCommittedTransaction(txId);
return false;
}
if (!current.cohort.getIdentifier().equals(txId)) {
LOG.debug("{}: Head of pendingFinishCommits queue is {}, ignoring consensus on transaction {}", logContext,
current.cohort.getIdentifier(), txId);
allMetadataCommittedTransaction(txId);
return false;
}
finishCommit(current.cohort);
return true;
}
private void allMetadataAbortedTransaction(final TransactionIdentifier txId) {
for (ShardDataTreeMetadata> m : metadata) {
m.onTransactionAborted(txId);
}
}
private void allMetadataCommittedTransaction(final TransactionIdentifier txId) {
for (ShardDataTreeMetadata> m : metadata) {
m.onTransactionCommitted(txId);
}
}
private void allMetadataPurgedTransaction(final TransactionIdentifier txId) {
for (ShardDataTreeMetadata> m : metadata) {
m.onTransactionPurged(txId);
}
}
private void allMetadataCreatedLocalHistory(final LocalHistoryIdentifier historyId) {
for (ShardDataTreeMetadata> m : metadata) {
m.onHistoryCreated(historyId);
}
}
private void allMetadataClosedLocalHistory(final LocalHistoryIdentifier historyId) {
for (ShardDataTreeMetadata> m : metadata) {
m.onHistoryClosed(historyId);
}
}
private void allMetadataPurgedLocalHistory(final LocalHistoryIdentifier historyId) {
for (ShardDataTreeMetadata> m : metadata) {
m.onHistoryPurged(historyId);
}
}
private void allMetadataSkipTransactions(final SkipTransactionsPayload payload) {
final var historyId = payload.getIdentifier();
final var txIds = payload.getTransactionIds();
for (ShardDataTreeMetadata> m : metadata) {
m.onTransactionsSkipped(historyId, txIds);
}
}
/**
* Create a transaction chain for specified history. Unlike {@link #ensureTransactionChain(LocalHistoryIdentifier)},
* this method is used for re-establishing state when we are taking over
*
* @param historyId Local history identifier
* @param closed True if the chain should be created in closed state (i.e. pending purge)
* @return Transaction chain handle
*/
final ShardDataTreeTransactionChain recreateTransactionChain(final LocalHistoryIdentifier historyId,
final boolean closed) {
final ShardDataTreeTransactionChain ret = new ShardDataTreeTransactionChain(historyId, this);
final ShardDataTreeTransactionChain existing = transactionChains.putIfAbsent(historyId, ret);
checkState(existing == null, "Attempted to recreate chain %s, but %s already exists", historyId, existing);
return ret;
}
final ShardDataTreeTransactionChain ensureTransactionChain(final LocalHistoryIdentifier historyId,
final @Nullable Runnable callback) {
ShardDataTreeTransactionChain chain = transactionChains.get(historyId);
if (chain == null) {
chain = new ShardDataTreeTransactionChain(historyId, this);
transactionChains.put(historyId, chain);
replicatePayload(historyId, CreateLocalHistoryPayload.create(
historyId, shard.getDatastoreContext().getInitialPayloadSerializedBufferCapacity()), callback);
} else if (callback != null) {
callback.run();
}
return chain;
}
final @NonNull ReadOnlyShardDataTreeTransaction newReadOnlyTransaction(final TransactionIdentifier txId) {
shard.getShardMBean().incrementReadOnlyTransactionCount();
final var historyId = txId.getHistoryId();
return historyId.getHistoryId() == 0 ? newStandaloneReadOnlyTransaction(txId)
: ensureTransactionChain(historyId, null).newReadOnlyTransaction(txId);
}
final @NonNull ReadOnlyShardDataTreeTransaction newStandaloneReadOnlyTransaction(final TransactionIdentifier txId) {
return new ReadOnlyShardDataTreeTransaction(this, txId, takeSnapshot());
}
final @NonNull ReadWriteShardDataTreeTransaction newReadWriteTransaction(final TransactionIdentifier txId) {
shard.getShardMBean().incrementReadWriteTransactionCount();
final var historyId = txId.getHistoryId();
return historyId.getHistoryId() == 0 ? newStandaloneReadWriteTransaction(txId)
: ensureTransactionChain(historyId, null).newReadWriteTransaction(txId);
}
final @NonNull ReadWriteShardDataTreeTransaction newStandaloneReadWriteTransaction(
final TransactionIdentifier txId) {
return new ReadWriteShardDataTreeTransaction(this, txId, newModification());
}
@VisibleForTesting
final void notifyListeners(final DataTreeCandidate candidate) {
treeChangeListenerPublisher.publishChanges(candidate);
}
/**
* Immediately purge all state relevant to leader. This includes all transaction chains and any scheduled
* replication callbacks.
*/
final void purgeLeaderState() {
for (ShardDataTreeTransactionChain chain : transactionChains.values()) {
chain.close();
}
transactionChains.clear();
replicationCallbacks.clear();
}
/**
* Close a single transaction chain.
*
* @param id History identifier
* @param callback Callback to invoke upon completion, may be null
*/
final void closeTransactionChain(final LocalHistoryIdentifier id, final @Nullable Runnable callback) {
if (commonCloseTransactionChain(id, callback)) {
replicatePayload(id, CloseLocalHistoryPayload.create(id,
shard.getDatastoreContext().getInitialPayloadSerializedBufferCapacity()), callback);
}
}
/**
* Close a single transaction chain which is received through ask-based protocol. It does not keep a commit record.
*
* @param id History identifier
*/
final void closeTransactionChain(final LocalHistoryIdentifier id) {
commonCloseTransactionChain(id, null);
}
private boolean commonCloseTransactionChain(final LocalHistoryIdentifier id, final @Nullable Runnable callback) {
final ShardDataTreeTransactionChain chain = transactionChains.get(id);
if (chain == null) {
LOG.debug("{}: Closing non-existent transaction chain {}", logContext, id);
if (callback != null) {
callback.run();
}
return false;
}
chain.close();
return true;
}
/**
* Purge a single transaction chain.
*
* @param id History identifier
* @param callback Callback to invoke upon completion, may be null
*/
final void purgeTransactionChain(final LocalHistoryIdentifier id, final @Nullable Runnable callback) {
final ShardDataTreeTransactionChain chain = transactionChains.remove(id);
if (chain == null) {
LOG.debug("{}: Purging non-existent transaction chain {}", logContext, id);
if (callback != null) {
callback.run();
}
return;
}
replicatePayload(id, PurgeLocalHistoryPayload.create(
id, shard.getDatastoreContext().getInitialPayloadSerializedBufferCapacity()), callback);
}
final void skipTransactions(final LocalHistoryIdentifier id, final ImmutableUnsignedLongSet transactionIds,
final Runnable callback) {
final ShardDataTreeTransactionChain chain = transactionChains.get(id);
if (chain == null) {
LOG.debug("{}: Skipping on non-existent transaction chain {}", logContext, id);
if (callback != null) {
callback.run();
}
return;
}
replicatePayload(id, SkipTransactionsPayload.create(id, transactionIds,
shard.getDatastoreContext().getInitialPayloadSerializedBufferCapacity()), callback);
}
final Optional readCurrentData() {
return readNode(YangInstanceIdentifier.of())
.map(state -> DataTreeCandidates.fromNormalizedNode(YangInstanceIdentifier.of(), state));
}
final void registerTreeChangeListener(final YangInstanceIdentifier path, final DOMDataTreeChangeListener listener,
final Optional initialState,
final Consumer> onRegistration) {
treeChangeListenerPublisher.registerTreeChangeListener(path, listener, initialState, onRegistration);
}
final int getQueueSize() {
return pendingTransactions.size() + pendingCommits.size() + pendingFinishCommits.size();
}
@Override
final void abortTransaction(final AbstractShardDataTreeTransaction> transaction, final Runnable callback) {
final TransactionIdentifier id = transaction.getIdentifier();
LOG.debug("{}: aborting transaction {}", logContext, id);
replicatePayload(id, AbortTransactionPayload.create(
id, shard.getDatastoreContext().getInitialPayloadSerializedBufferCapacity()), callback);
}
@Override
final void abortFromTransactionActor(final AbstractShardDataTreeTransaction> transaction) {
// No-op for free-standing transactions
}
@Override
final ShardDataTreeCohort finishTransaction(final ReadWriteShardDataTreeTransaction transaction,
final Optional> participatingShardNames) {
final DataTreeModification snapshot = transaction.getSnapshot();
final TransactionIdentifier id = transaction.getIdentifier();
LOG.debug("{}: readying transaction {}", logContext, id);
snapshot.ready();
LOG.debug("{}: transaction {} ready", logContext, id);
return createReadyCohort(transaction.getIdentifier(), snapshot, participatingShardNames);
}
final void purgeTransaction(final TransactionIdentifier id, final Runnable callback) {
LOG.debug("{}: purging transaction {}", logContext, id);
replicatePayload(id, PurgeTransactionPayload.create(
id, shard.getDatastoreContext().getInitialPayloadSerializedBufferCapacity()), callback);
}
@VisibleForTesting
public final Optional readNode(final YangInstanceIdentifier path) {
return takeSnapshot().readNode(path);
}
final DataTreeSnapshot takeSnapshot() {
return dataTree.takeSnapshot();
}
@VisibleForTesting
final DataTreeModification newModification() {
return takeSnapshot().newModification();
}
final Collection getAndClearPendingTransactions() {
Collection ret = new ArrayList<>(getQueueSize());
for (CommitEntry entry: pendingFinishCommits) {
ret.add(entry.cohort);
}
for (CommitEntry entry: pendingCommits) {
ret.add(entry.cohort);
}
for (CommitEntry entry: pendingTransactions) {
ret.add(entry.cohort);
}
pendingFinishCommits.clear();
pendingCommits.clear();
pendingTransactions.clear();
tip = dataTree;
return ret;
}
/**
* Called some time after {@link #processNextPendingTransaction()} decides to stop processing.
*/
final void resumeNextPendingTransaction() {
LOG.debug("{}: attempting to resume transaction processing", logContext);
processNextPending();
}
@SuppressWarnings("checkstyle:IllegalCatch")
private void processNextPendingTransaction() {
++currentTransactionBatch;
if (currentTransactionBatch > MAX_TRANSACTION_BATCH) {
LOG.debug("{}: Already processed {}, scheduling continuation", logContext, currentTransactionBatch);
shard.scheduleNextPendingTransaction();
return;
}
processNextPending(pendingTransactions, State.CAN_COMMIT_PENDING, entry -> {
final SimpleShardDataTreeCohort cohort = entry.cohort;
final DataTreeModification modification = cohort.getDataTreeModification();
LOG.debug("{}: Validating transaction {}", logContext, cohort.getIdentifier());
Exception cause;
try {
tip.validate(modification);
LOG.debug("{}: Transaction {} validated", logContext, cohort.getIdentifier());
cohort.successfulCanCommit();
entry.lastAccess = readTime();
return;
} catch (ConflictingModificationAppliedException e) {
LOG.warn("{}: Store Tx {}: Conflicting modification for path {}.", logContext, cohort.getIdentifier(),
e.getPath());
cause = new OptimisticLockFailedException("Optimistic lock failed for path " + e.getPath(), e);
} catch (DataValidationFailedException e) {
LOG.warn("{}: Store Tx {}: Data validation failed for path {}.", logContext, cohort.getIdentifier(),
e.getPath(), e);
// For debugging purposes, allow dumping of the modification. Coupled with the above
// precondition log, it should allow us to understand what went on.
LOG.debug("{}: Store Tx {}: modifications: {}", logContext, cohort.getIdentifier(), modification);
LOG.trace("{}: Current tree: {}", logContext, dataTree);
cause = new TransactionCommitFailedException("Data did not pass validation for path " + e.getPath(), e);
} catch (Exception e) {
LOG.warn("{}: Unexpected failure in validation phase", logContext, e);
cause = e;
}
// Failure path: propagate the failure, remove the transaction from the queue and loop to the next one
pendingTransactions.poll().cohort.failedCanCommit(cause);
});
}
private void processNextPending() {
processNextPendingCommit();
processNextPendingTransaction();
}
private void processNextPending(final Queue queue, final State allowedState,
final Consumer processor) {
while (!queue.isEmpty()) {
final CommitEntry entry = queue.peek();
final SimpleShardDataTreeCohort cohort = entry.cohort;
if (cohort.isFailed()) {
LOG.debug("{}: Removing failed transaction {}", logContext, cohort.getIdentifier());
queue.remove();
continue;
}
if (cohort.getState() == allowedState) {
processor.accept(entry);
}
break;
}
maybeRunOperationOnPendingTransactionsComplete();
}
private void processNextPendingCommit() {
processNextPending(pendingCommits, State.COMMIT_PENDING,
entry -> startCommit(entry.cohort, entry.cohort.getCandidate()));
}
private boolean peekNextPendingCommit() {
final CommitEntry first = pendingCommits.peek();
return first != null && first.cohort.getState() == State.COMMIT_PENDING;
}
// non-final for mocking
void startCanCommit(final SimpleShardDataTreeCohort cohort) {
final CommitEntry head = pendingTransactions.peek();
if (head == null) {
LOG.warn("{}: No transactions enqueued while attempting to start canCommit on {}", logContext, cohort);
return;
}
if (!cohort.equals(head.cohort)) {
// The tx isn't at the head of the queue so we can't start canCommit at this point. Here we check if this
// tx should be moved ahead of other tx's in the READY state in the pendingTransactions queue. If this tx
// has other participating shards, it could deadlock with other tx's accessing the same shards
// depending on the order the tx's are readied on each shard
// (see https://jira.opendaylight.org/browse/CONTROLLER-1836). Therefore, if the preceding participating
// shard names for a preceding pending tx, call it A, in the queue matches that of this tx, then this tx
// is allowed to be moved ahead of tx A in the queue so it is processed first to avoid potential deadlock
// if tx A is behind this tx in the pendingTransactions queue for a preceding shard. In other words, since
// canCommmit for this tx was requested before tx A, honor that request. If this tx is moved to the head of
// the queue as a result, then proceed with canCommit.
Collection precedingShardNames = extractPrecedingShardNames(cohort.getParticipatingShardNames());
if (precedingShardNames.isEmpty()) {
LOG.debug("{}: Tx {} is scheduled for canCommit step", logContext, cohort.getIdentifier());
return;
}
LOG.debug("{}: Evaluating tx {} for canCommit - preceding participating shard names {}",
logContext, cohort.getIdentifier(), precedingShardNames);
final Iterator iter = pendingTransactions.iterator();
int index = -1;
int moveToIndex = -1;
while (iter.hasNext()) {
final CommitEntry entry = iter.next();
++index;
if (cohort.equals(entry.cohort)) {
if (moveToIndex < 0) {
LOG.debug("{}: Not moving tx {} - cannot proceed with canCommit",
logContext, cohort.getIdentifier());
return;
}
LOG.debug("{}: Moving {} to index {} in the pendingTransactions queue",
logContext, cohort.getIdentifier(), moveToIndex);
iter.remove();
insertEntry(pendingTransactions, entry, moveToIndex);
if (!cohort.equals(pendingTransactions.peek().cohort)) {
LOG.debug("{}: Tx {} is not at the head of the queue - cannot proceed with canCommit",
logContext, cohort.getIdentifier());
return;
}
LOG.debug("{}: Tx {} is now at the head of the queue - proceeding with canCommit",
logContext, cohort.getIdentifier());
break;
}
if (entry.cohort.getState() != State.READY) {
LOG.debug("{}: Skipping pending transaction {} in state {}",
logContext, entry.cohort.getIdentifier(), entry.cohort.getState());
continue;
}
final Collection pendingPrecedingShardNames = extractPrecedingShardNames(
entry.cohort.getParticipatingShardNames());
if (precedingShardNames.equals(pendingPrecedingShardNames)) {
if (moveToIndex < 0) {
LOG.debug("{}: Preceding shard names {} for pending tx {} match - saving moveToIndex {}",
logContext, pendingPrecedingShardNames, entry.cohort.getIdentifier(), index);
moveToIndex = index;
} else {
LOG.debug(
"{}: Preceding shard names {} for pending tx {} match but moveToIndex already set to {}",
logContext, pendingPrecedingShardNames, entry.cohort.getIdentifier(), moveToIndex);
}
} else {
LOG.debug("{}: Preceding shard names {} for pending tx {} differ - skipping",
logContext, pendingPrecedingShardNames, entry.cohort.getIdentifier());
}
}
}
processNextPendingTransaction();
}
private static void insertEntry(final Deque queue, final CommitEntry entry, final int atIndex) {
if (atIndex == 0) {
queue.addFirst(entry);
return;
}
LOG.trace("Inserting into Deque at index {}", atIndex);
Deque tempStack = new ArrayDeque<>(atIndex);
for (int i = 0; i < atIndex; i++) {
tempStack.push(queue.poll());
}
queue.addFirst(entry);
tempStack.forEach(queue::addFirst);
}
private Collection extractPrecedingShardNames(final Optional> participatingShardNames) {
return participatingShardNames.map((Function, Collection>)
set -> set.headSet(shard.getShardName())).orElse(Collections.emptyList());
}
private void failPreCommit(final Throwable cause) {
shard.getShardMBean().incrementFailedTransactionsCount();
pendingTransactions.poll().cohort.failedPreCommit(cause);
processNextPendingTransaction();
}
// non-final for mocking
@SuppressWarnings("checkstyle:IllegalCatch")
void startPreCommit(final SimpleShardDataTreeCohort cohort) {
final CommitEntry entry = pendingTransactions.peek();
checkState(entry != null, "Attempted to pre-commit of %s when no transactions pending", cohort);
final SimpleShardDataTreeCohort current = entry.cohort;
verify(cohort.equals(current), "Attempted to pre-commit %s while %s is pending", cohort, current);
final TransactionIdentifier currentId = current.getIdentifier();
LOG.debug("{}: Preparing transaction {}", logContext, currentId);
final DataTreeCandidateTip candidate;
try {
candidate = tip.prepare(cohort.getDataTreeModification());
LOG.debug("{}: Transaction {} candidate ready", logContext, currentId);
} catch (DataValidationFailedException | RuntimeException e) {
failPreCommit(e);
return;
}
cohort.userPreCommit(candidate, new FutureCallback<>() {
@Override
public void onSuccess(final Empty result) {
// Set the tip of the data tree.
tip = verifyNotNull(candidate);
entry.lastAccess = readTime();
pendingTransactions.remove();
pendingCommits.add(entry);
LOG.debug("{}: Transaction {} prepared", logContext, currentId);
cohort.successfulPreCommit(candidate);
processNextPendingTransaction();
}
@Override
public void onFailure(final Throwable failure) {
failPreCommit(failure);
}
});
}
private void failCommit(final Exception cause) {
shard.getShardMBean().incrementFailedTransactionsCount();
pendingFinishCommits.poll().cohort.failedCommit(cause);
processNextPending();
}
@SuppressWarnings("checkstyle:IllegalCatch")
private void finishCommit(final SimpleShardDataTreeCohort cohort) {
final TransactionIdentifier txId = cohort.getIdentifier();
final DataTreeCandidate candidate = cohort.getCandidate();
LOG.debug("{}: Resuming commit of transaction {}", logContext, txId);
if (tip == candidate) {
// All pending candidates have been committed, reset the tip to the data tree.
tip = dataTree;
}
try {
dataTree.commit(candidate);
} catch (Exception e) {
LOG.error("{}: Failed to commit transaction {}", logContext, txId, e);
failCommit(e);
return;
}
allMetadataCommittedTransaction(txId);
shard.getShardMBean().incrementCommittedTransactionCount();
shard.getShardMBean().setLastCommittedTransactionTime(System.currentTimeMillis());
// FIXME: propagate journal index
pendingFinishCommits.poll().cohort.successfulCommit(UnsignedLong.ZERO, () -> {
LOG.trace("{}: Transaction {} committed, proceeding to notify", logContext, txId);
notifyListeners(candidate);
processNextPending();
});
}
// non-final for mocking
void startCommit(final SimpleShardDataTreeCohort cohort, final DataTreeCandidate candidate) {
final CommitEntry entry = pendingCommits.peek();
checkState(entry != null, "Attempted to start commit of %s when no transactions pending", cohort);
final SimpleShardDataTreeCohort current = entry.cohort;
if (!cohort.equals(current)) {
LOG.debug("{}: Transaction {} scheduled for commit step", logContext, cohort.getIdentifier());
return;
}
LOG.debug("{}: Starting commit for transaction {}", logContext, current.getIdentifier());
final TransactionIdentifier txId = cohort.getIdentifier();
final Payload payload;
try {
payload = CommitTransactionPayload.create(txId, candidate, PayloadVersion.current(),
shard.getDatastoreContext().getInitialPayloadSerializedBufferCapacity());
} catch (IOException e) {
LOG.error("{}: Failed to encode transaction {} candidate {}", logContext, txId, candidate, e);
pendingCommits.poll().cohort.failedCommit(e);
processNextPending();
return;
}
// We process next transactions pending canCommit before we call persistPayload to possibly progress subsequent
// transactions to the COMMIT_PENDING state so the payloads can be batched for replication. This is done for
// single-shard transactions that immediately transition from canCommit to preCommit to commit. Note that
// if the next pending transaction is progressed to COMMIT_PENDING and this method (startCommit) is called,
// the next transaction will not attempt to replicate b/c the current transaction is still at the head of the
// pendingCommits queue.
processNextPendingTransaction();
// After processing next pending transactions, we can now remove the current transaction from pendingCommits.
// Note this must be done before the call to peekNextPendingCommit below so we check the next transaction
// in order to properly determine the batchHint flag for the call to persistPayload.
pendingCommits.remove();
pendingFinishCommits.add(entry);
// See if the next transaction is pending commit (ie in the COMMIT_PENDING state) so it can be batched with
// this transaction for replication.
boolean replicationBatchHint = peekNextPendingCommit();
// Once completed, we will continue via payloadReplicationComplete
shard.persistPayload(txId, payload, replicationBatchHint);
entry.lastAccess = shard.ticker().read();
LOG.debug("{}: Transaction {} submitted to persistence", logContext, txId);
// Process the next transaction pending commit, if any. If there is one it will be batched with this
// transaction for replication.
processNextPendingCommit();
}
final Collection getCohortActors() {
return cohortRegistry.getCohortActors();
}
final void processCohortRegistryCommand(final ActorRef sender, final CohortRegistryCommand message) {
cohortRegistry.process(sender, message);
}
@Override
final ShardDataTreeCohort createFailedCohort(final TransactionIdentifier txId, final DataTreeModification mod,
final Exception failure) {
final SimpleShardDataTreeCohort cohort = new SimpleShardDataTreeCohort(this, mod, txId, failure);
pendingTransactions.add(new CommitEntry(cohort, readTime()));
return cohort;
}
@Override
final ShardDataTreeCohort createReadyCohort(final TransactionIdentifier txId, final DataTreeModification mod,
final Optional> participatingShardNames) {
SimpleShardDataTreeCohort cohort = new SimpleShardDataTreeCohort(this, mod, txId,
cohortRegistry.createCohort(schemaContext, txId, shard::executeInSelf,
COMMIT_STEP_TIMEOUT), participatingShardNames);
pendingTransactions.add(new CommitEntry(cohort, readTime()));
return cohort;
}
// Exposed for ShardCommitCoordinator so it does not have deal with local histories (it does not care), this mimics
// the newReadWriteTransaction()
final ShardDataTreeCohort newReadyCohort(final TransactionIdentifier txId, final DataTreeModification mod,
final Optional> participatingShardNames) {
final var historyId = txId.getHistoryId();
if (historyId.getHistoryId() == 0) {
return createReadyCohort(txId, mod, participatingShardNames);
}
return ensureTransactionChain(historyId, null).createReadyCohort(txId, mod, participatingShardNames);
}
@SuppressFBWarnings(value = "DB_DUPLICATE_SWITCH_CLAUSES", justification = "See inline comments below.")
final void checkForExpiredTransactions(final long transactionCommitTimeoutMillis,
final Function accessTimeUpdater) {
final long timeout = TimeUnit.MILLISECONDS.toNanos(transactionCommitTimeoutMillis);
final long now = readTime();
final Queue currentQueue = !pendingFinishCommits.isEmpty() ? pendingFinishCommits :
!pendingCommits.isEmpty() ? pendingCommits : pendingTransactions;
final CommitEntry currentTx = currentQueue.peek();
if (currentTx == null) {
// Empty queue, no-op
return;
}
long delta = now - currentTx.lastAccess;
if (delta < timeout) {
// Not expired yet, bail
return;
}
final OptionalLong updateOpt = accessTimeUpdater.apply(currentTx.cohort);
if (updateOpt.isPresent()) {
final long newAccess = updateOpt.orElseThrow();
final long newDelta = now - newAccess;
if (newDelta < delta) {
LOG.debug("{}: Updated current transaction {} access time", logContext,
currentTx.cohort.getIdentifier());
currentTx.lastAccess = newAccess;
delta = newDelta;
}
if (delta < timeout) {
// Not expired yet, bail
return;
}
}
final long deltaMillis = TimeUnit.NANOSECONDS.toMillis(delta);
final State state = currentTx.cohort.getState();
LOG.warn("{}: Current transaction {} has timed out after {} ms in state {}", logContext,
currentTx.cohort.getIdentifier(), deltaMillis, state);
boolean processNext = true;
final TimeoutException cohortFailure = new TimeoutException("Backend timeout in state " + state + " after "
+ deltaMillis + "ms");
switch (state) {
case CAN_COMMIT_PENDING:
currentQueue.remove().cohort.failedCanCommit(cohortFailure);
break;
case CAN_COMMIT_COMPLETE:
// The suppression of the FindBugs "DB_DUPLICATE_SWITCH_CLAUSES" warning pertains to this clause
// whose code is duplicated with PRE_COMMIT_COMPLETE. The clauses aren't combined in case the code
// in PRE_COMMIT_COMPLETE is changed.
currentQueue.remove().cohort.reportFailure(cohortFailure);
break;
case PRE_COMMIT_PENDING:
currentQueue.remove().cohort.failedPreCommit(cohortFailure);
break;
case PRE_COMMIT_COMPLETE:
// FIXME: this is a legacy behavior problem. Three-phase commit protocol specifies that after we
// are ready we should commit the transaction, not abort it. Our current software stack does
// not allow us to do that consistently, because we persist at the time of commit, hence
// we can end up in a state where we have pre-committed a transaction, then a leader failover
// occurred ... the new leader does not see the pre-committed transaction and does not have
// a running timer. To fix this we really need two persistence events.
//
// The first one, done at pre-commit time will hold the transaction payload. When consensus
// is reached, we exit the pre-commit phase and start the pre-commit timer. Followers do not
// apply the state in this event.
//
// The second one, done at commit (or abort) time holds only the transaction identifier and
// signals to followers that the state should (or should not) be applied.
//
// In order to make the pre-commit timer working across failovers, though, we need
// a per-shard cluster-wide monotonic time, so a follower becoming the leader can accurately
// restart the timer.
currentQueue.remove().cohort.reportFailure(cohortFailure);
break;
case COMMIT_PENDING:
LOG.warn("{}: Transaction {} is still committing, cannot abort", logContext,
currentTx.cohort.getIdentifier());
currentTx.lastAccess = now;
processNext = false;
return;
case READY:
currentQueue.remove().cohort.reportFailure(cohortFailure);
break;
case ABORTED:
case COMMITTED:
case FAILED:
default:
currentQueue.remove();
}
if (processNext) {
processNextPending();
}
}
// non-final for mocking
boolean startAbort(final SimpleShardDataTreeCohort cohort) {
final Iterator it = Iterables.concat(pendingFinishCommits, pendingCommits,
pendingTransactions).iterator();
if (!it.hasNext()) {
LOG.debug("{}: no open transaction while attempting to abort {}", logContext, cohort.getIdentifier());
return true;
}
// First entry is special, as it may already be committing
final CommitEntry first = it.next();
if (cohort.equals(first.cohort)) {
if (cohort.getState() != State.COMMIT_PENDING) {
LOG.debug("{}: aborting head of queue {} in state {}", logContext, cohort.getIdentifier(),
cohort.getIdentifier());
it.remove();
if (cohort.getCandidate() != null) {
rebaseTransactions(it, dataTree);
}
processNextPending();
return true;
}
LOG.warn("{}: transaction {} is committing, skipping abort", logContext, cohort.getIdentifier());
return false;
}
DataTreeTip newTip = requireNonNullElse(first.cohort.getCandidate(), dataTree);
while (it.hasNext()) {
final CommitEntry e = it.next();
if (cohort.equals(e.cohort)) {
LOG.debug("{}: aborting queued transaction {}", logContext, cohort.getIdentifier());
it.remove();
if (cohort.getCandidate() != null) {
rebaseTransactions(it, newTip);
}
return true;
}
newTip = requireNonNullElse(e.cohort.getCandidate(), newTip);
}
LOG.debug("{}: aborted transaction {} not found in the queue", logContext, cohort.getIdentifier());
return true;
}
@SuppressWarnings("checkstyle:IllegalCatch")
private void rebaseTransactions(final Iterator iter, final @NonNull DataTreeTip newTip) {
tip = requireNonNull(newTip);
while (iter.hasNext()) {
final SimpleShardDataTreeCohort cohort = iter.next().cohort;
if (cohort.getState() == State.CAN_COMMIT_COMPLETE) {
LOG.debug("{}: Revalidating queued transaction {}", logContext, cohort.getIdentifier());
try {
tip.validate(cohort.getDataTreeModification());
} catch (DataValidationFailedException | RuntimeException e) {
LOG.debug("{}: Failed to revalidate queued transaction {}", logContext, cohort.getIdentifier(), e);
cohort.reportFailure(e);
}
} else if (cohort.getState() == State.PRE_COMMIT_COMPLETE) {
LOG.debug("{}: Repreparing queued transaction {}", logContext, cohort.getIdentifier());
try {
tip.validate(cohort.getDataTreeModification());
DataTreeCandidateTip candidate = tip.prepare(cohort.getDataTreeModification());
cohort.setNewCandidate(candidate);
tip = candidate;
} catch (RuntimeException | DataValidationFailedException e) {
LOG.debug("{}: Failed to reprepare queued transaction {}", logContext, cohort.getIdentifier(), e);
cohort.reportFailure(e);
}
}
}
}
final void setRunOnPendingTransactionsComplete(final Runnable operation) {
runOnPendingTransactionsComplete = operation;
maybeRunOperationOnPendingTransactionsComplete();
}
private void maybeRunOperationOnPendingTransactionsComplete() {
if (runOnPendingTransactionsComplete != null && !anyPendingTransactions()) {
LOG.debug("{}: Pending transactions complete - running operation {}", logContext,
runOnPendingTransactionsComplete);
runOnPendingTransactionsComplete.run();
runOnPendingTransactionsComplete = null;
}
}
final ShardStats getStats() {
return shard.getShardMBean();
}
final Iterator cohortIterator() {
return Iterables.transform(Iterables.concat(pendingFinishCommits, pendingCommits, pendingTransactions),
e -> e.cohort).iterator();
}
final void removeTransactionChain(final LocalHistoryIdentifier id) {
if (transactionChains.remove(id) != null) {
LOG.debug("{}: Removed transaction chain {}", logContext, id);
}
}
}