All Downloads are FREE. Search and download functionalities are using the official Maven repository.

[email protected] Maven / Gradle / Ivy

The newest version!
module ietf-tls-server {
  yang-version 1.1;
  namespace "urn:ietf:params:xml:ns:yang:ietf-tls-server";
  prefix tlss;

  import ietf-netconf-acm {
    prefix nacm;
    reference
      "RFC 8341: Network Configuration Access Control Model";
  }
  import ietf-crypto-types {
    prefix ct;
    reference
      "RFC 9640: YANG Data Types and Groupings for Cryptography";
  }
  import ietf-truststore {
    prefix ts;
    reference
      "RFC 9641: A YANG Data Model for a Truststore";
  }
  import ietf-keystore {
    prefix ks;
    reference
      "RFC 9642: A YANG Data Model for a Keystore";
  }
  import ietf-tls-common {
    prefix tlscmn;
    reference
      "RFC 9645: YANG Groupings for TLS Clients and TLS Servers";
  }

  organization
    "IETF NETCONF (Network Configuration) Working Group";
  contact
    "WG List:  NETCONF WG list <mailto:[email protected]>
     WG Web:   https://datatracker.ietf.org/wg/netconf
     Author:   Kent Watsen <mailto:[email protected]>
     Author:   Jeff Hartley <mailto:[email protected]>";
  description
    "This module defines reusable groupings for TLS servers that
     can be used as a basis for specific TLS server instances.

     The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
     'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
     'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document
     are to be interpreted as described in BCP 14 (RFC 2119)
     (RFC 8174) when, and only when, they appear in all
     capitals, as shown here.

     Copyright (c) 2024 IETF Trust and the persons identified
     as authors of the code. All rights reserved.

     Redistribution and use in source and binary forms, with
     or without modification, is permitted pursuant to, and
     subject to the license terms contained in, the Revised
     BSD License set forth in Section 4.c of the IETF Trust's
     Legal Provisions Relating to IETF Documents
     (https://trustee.ietf.org/license-info).

     This version of this YANG module is part of RFC 9645
     (https://www.rfc-editor.org/info/rfc9645); see the RFC
     itself for full legal notices.";

  revision 2024-10-10 {
    description
      "Initial version.";
    reference
      "RFC 9645: YANG Groupings for TLS Clients and TLS Servers";
  }

  // Features

  feature tls-server-keepalives {
    description
      "Per-socket TLS keepalive parameters are configurable for
       TLS servers on the server implementing this feature.";
  }

  feature server-ident-x509-cert {
    description
      "Indicates that the server supports identifying itself
       using X.509 certificates.";
    reference
      "RFC 5280:
         Internet X.509 Public Key Infrastructure Certificate
         and Certificate Revocation List (CRL) Profile";
  }

  feature server-ident-raw-public-key {
    description
      "Indicates that the server supports identifying itself
       using raw public keys.";
    reference
      "RFC 7250:
         Using Raw Public Keys in Transport Layer Security (TLS)
         and Datagram Transport Layer Security (DTLS)";
  }

  feature server-ident-tls12-psk {
    if-feature "tlscmn:tls12";
    description
      "Indicates that the server supports identifying itself
       using TLS 1.2 PSKs (pre-shared or pairwise symmetric keys).";
    reference
      "RFC 4279:
         Pre-Shared Key Ciphersuites for Transport Layer Security
         (TLS)";
  }

  feature server-ident-tls13-epsk {
    if-feature "tlscmn:tls13";
    description
      "Indicates that the server supports identifying itself
       using TLS 1.3 External PSKs (pre-shared keys).";
    reference
      "RFC 8446:
         The Transport Layer Security (TLS) Protocol Version 1.3";
  }

  feature client-auth-supported {
    description
      "Indicates that the configuration for how to authenticate
       clients can be configured herein.  TLS-level client
       authentication may not be needed when client authentication
       is expected to occur only at another protocol layer.";
  }

  feature client-auth-x509-cert {
    description
      "Indicates that the server supports authenticating clients
       using X.509 certificates.";
    reference
      "RFC 5280:
         Internet X.509 Public Key Infrastructure Certificate
         and Certificate Revocation List (CRL) Profile";
  }

  feature client-auth-raw-public-key {
    description
      "Indicates that the server supports authenticating clients
       using raw public keys.";
    reference
      "RFC 7250:
         Using Raw Public Keys in Transport Layer Security (TLS)
         and Datagram Transport Layer Security (DTLS)";
  }

  feature client-auth-tls12-psk {
    description
      "Indicates that the server supports authenticating clients
       using PSKs (pre-shared or pairwise symmetric keys).";
    reference
      "RFC 4279:
         Pre-Shared Key Ciphersuites for Transport Layer Security
         (TLS)";
  }

  feature client-auth-tls13-epsk {
    description
      "Indicates that the server supports authenticating clients
       using TLS 1.3 External PSKs (pre-shared keys).";
    reference
      "RFC 8446:
         The Transport Layer Security (TLS) Protocol Version 1.3";
  }

  // Groupings

  grouping tls-server-grouping {
    description
      "A reusable grouping for configuring a TLS server without
       any consideration for how underlying TCP sessions are
       established.

       Note that this grouping uses fairly typical descendant
       node names such that a stack of 'uses' statements will
       have name conflicts.  It is intended that the consuming
       data model will resolve the issue (e.g., by wrapping
       the 'uses' statement in a container called
       'tls-server-parameters').  This model purposely does
       not do this itself so as to provide maximum flexibility
       to consuming models.";
    container server-identity {
      nacm:default-deny-write;
      description
        "A locally defined or referenced End-Entity (EE) certificate,
         including any configured intermediate certificates, that
         the TLS server will present when establishing a TLS
         connection in its Certificate message, as defined in
         Section 7.4.2 of RFC 5246 and Section 4.4.2 of RFC 8446.";
      reference
        "RFC 5246: The Transport Layer Security (TLS) Protocol
                   Version 1.2
         RFC 8446: The Transport Layer Security (TLS) Protocol
                   Version 1.3
         RFC 9642: A YANG Data Model for a Keystore";
      choice auth-type {
        mandatory true;
        description
          "A choice amongst authentication types, of which one must
           be enabled (via its associated 'feature') and selected.";
        case certificate {
          if-feature "server-ident-x509-cert";
          container certificate {
            description
              "Specifies the server identity using a certificate.";
            uses "ks:inline-or-keystore-end-entity-cert-with-key-"
               + "grouping" {
              refine "inline-or-keystore/inline/inline-definition" {
                must 'not(public-key-format) or derived-from-or-self'
                   + '(public-key-format,'
                   + ' "ct:subject-public-'
                   + 'key-info-format")';
              }
              refine "inline-or-keystore/central-keystore/"
                   + "central-keystore-reference/asymmetric-key" {
                must 'not(deref(.)/../ks:public-key-format) or '
                   + 'derived-from-or-self(deref(.)/../ks:public-key'
                   + '-format, "ct:subject-public-key-info-format")';
              }
            }
          }
        }
        case raw-private-key {
          if-feature "server-ident-raw-public-key";
          container raw-private-key {
            description
              "Specifies the server identity using a raw
               private key.";
            uses ks:inline-or-keystore-asymmetric-key-grouping {
              refine "inline-or-keystore/inline/inline-definition" {
                must 'not(public-key-format) or derived-from-or-self'
                   + '(public-key-format,'
                   + ' "ct:subject-public-'
                   + 'key-info-format")';
              }
              refine "inline-or-keystore/central-keystore/"
                   + "central-keystore-reference" {
                must 'not(deref(.)/../ks:public-key-format) or '
                   + 'derived-from-or-self(deref(.)/../ks:public-key'
                   + '-format, "ct:subject-public-key-info-format")';
              }
            }
          }
        }
        case tls12-psk {
          if-feature "server-ident-tls12-psk";
          container tls12-psk {
            description
              "Specifies the server identity using a PSK (pre-shared
               or pairwise symmetric key).";
            uses ks:inline-or-keystore-symmetric-key-grouping;
            leaf id-hint {
              type string;
              description
                "The key 'psk_identity_hint' value used in the TLS
                 'ServerKeyExchange' message.";
              reference
                "RFC 4279: Pre-Shared Key Ciphersuites for
                           Transport Layer Security (TLS)";
            }
          }
        }
        case tls13-epsk {
          if-feature "server-ident-tls13-epsk";
          container tls13-epsk {
            description
              "An External Pre-Shared Key (EPSK) is established
               or provisioned out of band, i.e., not from a TLS
               connection.  An EPSK is a tuple of (Base Key,
               External Identity, Hash).  EPSKs MUST NOT be
               imported for (D)TLS 1.2 or prior versions.
               When PSKs are provisioned out of band, the PSK
               identity and the KDF hash algorithm to be used
               with the PSK MUST also be provisioned.

               The structure of this container is designed to
               satisfy the requirements in Section 4.2.11 of
               RFC 8446, the recommendations from Section 6 of
               RFC 9257, and the EPSK input fields detailed in
               Section 5.1 of RFC 9258.  The base-key is based
               upon 'ks:inline-or-keystore-symmetric-key-grouping'
               in order to provide users with flexible and
               secure storage options.";
            reference
              "RFC 8446: The Transport Layer Security (TLS)
                         Protocol Version 1.3
               RFC 9257: Guidance for External Pre-Shared Key
                         (PSK) Usage in TLS
               RFC 9258: Importing External Pre-Shared Keys
                         (PSKs) for TLS 1.3";
            uses ks:inline-or-keystore-symmetric-key-grouping;
            leaf external-identity {
              type string;
              mandatory true;
              description
                "As per Section 4.2.11 of RFC 8446 and Section 4.1
                 of RFC 9257, a sequence of bytes used to identify
                 an EPSK.  A label for a pre-shared key established
                 externally.";
              reference
                "RFC 8446: The Transport Layer Security (TLS)
                           Protocol Version 1.3
                 RFC 9257: Guidance for External Pre-Shared Key
                           (PSK) Usage in TLS";
            }
            leaf hash {
              type tlscmn:epsk-supported-hash;
              default "sha-256";
              description
                "As per Section 4.2.11 of RFC 8446, for EPSKs,
                 the hash algorithm MUST be set when the PSK is
                 established; otherwise, default to SHA-256 if
                 no such algorithm is defined.  The server MUST
                 ensure that it selects a compatible PSK (if any)
                 and cipher suite.  Each PSK MUST only be used
                 with a single hash function.";
              reference
                "RFC 8446: The Transport Layer Security (TLS)
                           Protocol Version 1.3";
            }
            leaf context {
              type string;
              description
                "As per Section 5.1 of RFC 9258, context MUST
                 include the context used to determine the EPSK,
                 if any exists.  For example, context may include
                 information about peer roles or identities
                 to mitigate Selfie-style reflection attacks.
                 Since the EPSK is a key derived from an external
                 protocol or sequence of protocols, context MUST
                 include a channel binding for the deriving
                 protocols (see RFC 5056).  The details of this
                 binding are protocol specific and out of scope
                 for this document.";
              reference
                "RFC 9258: Importing External Pre-Shared Keys
                           (PSKs) for TLS 1.3";
            }
            leaf target-protocol {
              type uint16;
              description
                "As per Section 3.1 of RFC 9258, the protocol
                 for which a PSK is imported for use.";
              reference
                "RFC 9258: Importing External Pre-Shared Keys
                           (PSKs) for TLS 1.3";
            }
            leaf target-kdf {
              type uint16;
              description
                "As per Section 3 of RFC 9258, the KDF for
                 which a PSK is imported for use.";
              reference
                "RFC 9258: Importing External Pre-Shared Keys
                           (PSKs) for TLS 1.3";
            }
          }
        }
      }
    } // container server-identity
    container client-authentication {
      if-feature "client-auth-supported";
      nacm:default-deny-write;
      must "ca-certs or ee-certs or raw-public-keys or tls12-psks
                    or tls13-epsks";
      presence "Indicates that client authentication is supported
                (i.e., that the server will request clients send
                certificates).  If not configured, the TLS server
                SHOULD NOT request that TLS clients provide
                authentication credentials.";
      description
        "Specifies how the TLS server can authenticate TLS clients.
         Any combination of credentials is additive and unordered.

         Note that no configuration is required for authentication
         based on PSK (pre-shared or pairwise symmetric key) as the
         the key is necessarily the same as configured in the
         '../server-identity' node.";
      container ca-certs {
        if-feature "client-auth-x509-cert";
        presence "Indicates that Certification Authority (CA)
                  certificates have been configured.  This
                  statement is present so the mandatory
                  descendant nodes do not imply that this node
                  must be configured.";
        description
          "A set of CA certificates used by the TLS server to
           authenticate TLS client certificates.  A client
           certificate is authenticated if it has a valid chain
           of trust to a configured CA certificate.";
        reference
          "RFC 9641: A YANG Data Model for a Truststore";
        uses ts:inline-or-truststore-certs-grouping;
      }
      container ee-certs {
        if-feature "client-auth-x509-cert";
        presence "Indicates that EE certificates have been
                  configured.  This statement is present so the
                  mandatory descendant nodes do not imply that
                  this node must be configured.";
        description
          "A set of client certificates (i.e., EE certificates)
           used by the TLS server to authenticate
           certificates presented by TLS clients.  A client
           certificate is authenticated if it is an exact
           match to a configured client certificate.";
        reference
          "RFC 9641: A YANG Data Model for a Truststore";
        uses ts:inline-or-truststore-certs-grouping;
      }
      container raw-public-keys {
        if-feature "client-auth-raw-public-key";
        presence "Indicates that raw public keys have been
                  configured.  This statement is present so
                  the mandatory descendant nodes do not imply
                  that this node must be configured.";
        description
          "A set of raw public keys used by the TLS server to
           authenticate raw public keys presented by the TLS
           client.  A raw public key is authenticated if it
           is an exact match to a configured raw public key.";
        reference
          "RFC 9641: A YANG Data Model for a Truststore";
        uses ts:inline-or-truststore-public-keys-grouping {
          refine "inline-or-truststore/inline/inline-definition/"
               + "public-key" {
            must 'derived-from-or-self(public-key-format,'
               + ' "ct:subject-public-key-info-format")';
          }
          refine "inline-or-truststore/central-truststore/"
               + "central-truststore-reference" {
            must 'not(deref(.)/../ts:public-key/ts:public-key-'
               + 'format[not(derived-from-or-self(., "ct:subject-'
               + 'public-key-info-format"))])';
          }
        }
      }
      leaf tls12-psks {
        if-feature "client-auth-tls12-psk";
        type empty;
        description
          "Indicates that the TLS server can authenticate TLS clients
           using configured PSKs (pre-shared or pairwise symmetric
           keys).

           No configuration is required since the PSK value is the
           same as PSK value configured in the 'server-identity'
           node.";
      }
      leaf tls13-epsks {
        if-feature "client-auth-tls13-epsk";
        type empty;
        description
          "Indicates that the TLS 1.3 server can authenticate TLS
           clients using configured External PSKs (pre-shared keys).

           No configuration is required since the PSK value is the
           same as PSK value configured in the 'server-identity'
           node.";
      }
    } // container client-authentication
    container hello-params {
      nacm:default-deny-write;
      if-feature "tlscmn:hello-params";
      uses tlscmn:hello-params-grouping;
      description
        "Configurable parameters for the TLS hello message.";
    } // container hello-params
    container keepalives {
      nacm:default-deny-write;
      if-feature "tls-server-keepalives";
      description
        "Configures the keepalive policy for the TLS server.";
      leaf peer-allowed-to-send {
        type empty;
        description
          "Indicates that the remote TLS client is allowed to send
           HeartbeatRequest messages, as defined by RFC 6520,
           to this TLS server.";
        reference
          "RFC 6520: Transport Layer Security (TLS) and Datagram
           Transport Layer Security (DTLS) Heartbeat Extension";
      }
      container test-peer-aliveness {
        presence "Indicates that the TLS server proactively tests the
                  aliveness of the remote TLS client.";
        description
          "Configures the keepalive policy to proactively test
           the aliveness of the TLS client.  An unresponsive
           TLS client is dropped after approximately max-wait
           * max-attempts seconds.";
        leaf max-wait {
          type uint16 {
            range "1..max";
          }
          units "seconds";
          default "30";
          description
            "Sets the amount of time in seconds, after which a
             TLS-level message will be sent to test the
             aliveness of the TLS client if no data has been
             received from the TLS client.";
        }
        leaf max-attempts {
          type uint8;
          default "3";
          description
            "Sets the maximum number of sequential keepalive
             messages that can fail to obtain a response from
             the TLS client before assuming the TLS client is
             no longer alive.";
        }
      }
    } // container keepalives
  } // grouping tls-server-grouping

}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy