All Downloads are FREE. Search and download functionalities are using the official Maven repository.

net.sf.saxon.dom.NodeWrapper Maven / Gradle / Ivy

Go to download

Provides a basic XSLT 2.0 and XQuery 1.0 processor (W3C Recommendations, January 2007). Command line interfaces and implementations of several Java APIs (DOM, XPath, s9api) are also included.

The newest version!
package net.sf.saxon.dom;
import net.sf.saxon.Configuration;
import net.sf.saxon.event.Receiver;
import net.sf.saxon.om.*;
import net.sf.saxon.pattern.NameTest;
import net.sf.saxon.pattern.NodeTest;
import net.sf.saxon.trans.XPathException;
import net.sf.saxon.type.Type;
import net.sf.saxon.value.AtomicValue;
import net.sf.saxon.value.StringValue;
import net.sf.saxon.value.UntypedAtomicValue;
import net.sf.saxon.value.Value;
import org.w3c.dom.*;

import java.util.ArrayList;


/**
  * A node in the XML parse tree representing an XML element, character content, or attribute.

* This is the implementation of the NodeInfo interface used as a wrapper for DOM nodes. */ public class NodeWrapper implements NodeInfo, VirtualNode, SiblingCountingNode { protected Node node; private int namecode = -1; protected short nodeKind; private NodeWrapper parent; // null means unknown protected DocumentWrapper docWrapper; protected int index; // -1 means unknown protected int span = 1; // the number of adjacent text nodes wrapped by this NodeWrapper. // If span>1, node will always be the first of a sequence of adjacent text nodes /** * This constructor is protected: nodes should be created using the makeWrapper * factory method * @param node The DOM node to be wrapped * @param parent The NodeWrapper that wraps the parent of this node * @param index Position of this node among its siblings */ protected NodeWrapper(Node node, NodeWrapper parent, int index) { this.node = node; this.parent = parent; this.index = index; } /** * Factory method to wrap a DOM node with a wrapper that implements the Saxon * NodeInfo interface. * @param node The DOM node * @param docWrapper The wrapper for the containing Document node * @return The new wrapper for the supplied node * @throws NullPointerException if the node or the document wrapper are null */ protected NodeWrapper makeWrapper(Node node, DocumentWrapper docWrapper) { if (node == null) { throw new NullPointerException("NodeWrapper#makeWrapper: Node must not be null"); } if (docWrapper == null) { throw new NullPointerException("NodeWrapper#makeWrapper: DocumentWrapper must not be null"); } return makeWrapper(node, docWrapper, null, -1); } /** * Factory method to wrap a DOM node with a wrapper that implements the Saxon * NodeInfo interface. * @param node The DOM node * @param docWrapper The wrapper for the containing Document node * * @param parent The wrapper for the parent of the JDOM node * @param index The position of this node relative to its siblings * @return The new wrapper for the supplied node */ protected NodeWrapper makeWrapper(Node node, DocumentWrapper docWrapper, NodeWrapper parent, int index) { NodeWrapper wrapper; switch (node.getNodeType()) { case Node.DOCUMENT_NODE: case Node.DOCUMENT_FRAGMENT_NODE: return docWrapper; case Node.ELEMENT_NODE: wrapper = new NodeWrapper(node, parent, index); wrapper.nodeKind = Type.ELEMENT; break; case Node.ATTRIBUTE_NODE: wrapper = new NodeWrapper(node, parent, index); wrapper.nodeKind = Type.ATTRIBUTE; break; case Node.TEXT_NODE: wrapper = new NodeWrapper(node, parent, index); wrapper.nodeKind = Type.TEXT; break; case Node.CDATA_SECTION_NODE: wrapper = new NodeWrapper(node, parent, index); wrapper.nodeKind = Type.TEXT; break; case Node.COMMENT_NODE: wrapper = new NodeWrapper(node, parent, index); wrapper.nodeKind = Type.COMMENT; break; case Node.PROCESSING_INSTRUCTION_NODE: wrapper = new NodeWrapper(node, parent, index); wrapper.nodeKind = Type.PROCESSING_INSTRUCTION; break; default: throw new IllegalArgumentException("Unsupported node type in DOM! " + node.getNodeType() + " instance " + node.toString()); } wrapper.docWrapper = docWrapper; return wrapper; } /** * Get the underlying DOM node, to implement the VirtualNode interface */ public Object getUnderlyingNode() { return node; } /** * Get the configuration */ public Configuration getConfiguration() { return docWrapper.getConfiguration(); } /** * Get the name pool for this node * @return the NamePool */ public NamePool getNamePool() { return docWrapper.getNamePool(); } /** * Return the type of node. * @return one of the values Node.ELEMENT, Node.TEXT, Node.ATTRIBUTE, etc. */ public int getNodeKind() { return nodeKind; } /** * Get the typed value of the item */ public SequenceIterator getTypedValue() { return SingletonIterator.makeIterator((AtomicValue)atomize()); } /** * Get the typed value. The result of this method will always be consistent with the method * {@link net.sf.saxon.om.Item#getTypedValue()}. However, this method is often more convenient and may be * more efficient, especially in the common case where the value is expected to be a singleton. * * @return the typed value. If requireSingleton is set to true, the result will always be an * AtomicValue. In other cases it may be a Value representing a sequence whose items are atomic * values. * @since 8.5 */ public Value atomize() { switch (getNodeKind()) { case Type.COMMENT: case Type.PROCESSING_INSTRUCTION: return new StringValue(getStringValueCS()); default: return new UntypedAtomicValue(getStringValueCS()); } } /** * Get the type annotation */ public int getTypeAnnotation() { if (getNodeKind() == Type.ATTRIBUTE) { return StandardNames.XS_UNTYPED_ATOMIC; } return StandardNames.XS_UNTYPED; } /** * Determine whether this is the same node as another node.
* Note: a.isSameNodeInfo(b) if and only if generateId(a)==generateId(b) * @return true if this Node object and the supplied Node object represent the * same node in the tree. */ public boolean isSameNodeInfo(NodeInfo other) { if (!(other instanceof NodeWrapper)) { return false; } if (docWrapper.domLevel3) { return node.isSameNode(((NodeWrapper)other).node); } else { NodeWrapper ow = (NodeWrapper)other; return getNodeKind()==ow.getNodeKind() && getNameCode()==ow.getNameCode() && // redundant, but gives a quick exit getSiblingPosition()==ow.getSiblingPosition() && getParent().isSameNodeInfo(ow.getParent()); } } /** * The equals() method compares nodes for identity. It is defined to give the same result * as isSameNodeInfo(). * @param other the node to be compared with this node * @return true if this NodeInfo object and the supplied NodeInfo object represent * the same node in the tree. * @since 8.7 Previously, the effect of the equals() method was not defined. Callers * should therefore be aware that third party implementations of the NodeInfo interface may * not implement the correct semantics. It is safer to use isSameNodeInfo() for this reason. * The equals() method has been defined because it is useful in contexts such as a Java Set or HashMap. */ public boolean equals(Object other) { return other instanceof NodeInfo && isSameNodeInfo((NodeInfo)other); } /** * The hashCode() method obeys the contract for hashCode(): that is, if two objects are equal * (represent the same node) then they must have the same hashCode() * @since 8.7 Previously, the effect of the equals() and hashCode() methods was not defined. Callers * should therefore be aware that third party implementations of the NodeInfo interface may * not implement the correct semantics. */ public int hashCode() { FastStringBuffer buffer = new FastStringBuffer(20); generateId(buffer); return buffer.toString().hashCode(); } /** * Get the System ID for the node. * @return the System Identifier of the entity in the source document containing the node, * or null if not known. Note this is not the same as the base URI: the base URI can be * modified by xml:base, but the system ID cannot. */ public String getSystemId() { return docWrapper.baseURI; } public void setSystemId(String uri) { docWrapper.baseURI = uri; } /** * Get the Base URI for the node, that is, the URI used for resolving a relative URI contained * in the node. In the DOM model, base URIs are held only an the document level. */ public String getBaseURI() { NodeInfo n = this; if (getNodeKind() != Type.ELEMENT) { n = getParent(); } // Look for an xml:base attribute while (n != null) { String xmlbase = n.getAttributeValue(StandardNames.XML_BASE); if (xmlbase != null) { return xmlbase; } n = n.getParent(); } // if not found, return the base URI of the document node return docWrapper.baseURI; } /** * Get line number * @return the line number of the node in its original source document; or -1 if not available */ public int getLineNumber() { return -1; } /** * Determine the relative position of this node and another node, in document order. * The other node will always be in the same document. * @param other The other node, whose position is to be compared with this node * @return -1 if this node precedes the other node, +1 if it follows the other * node, or 0 if they are the same node. (In this case, isSameNode() will always * return true, and the two nodes will produce the same result for generateId()) */ public int compareOrder(NodeInfo other) { // Use the DOM Level-3 compareDocumentPosition() method if (other instanceof NodeWrapper && docWrapper.domLevel3) { if (isSameNodeInfo(other)) { return 0; } try { short relationship = node.compareDocumentPosition(((NodeWrapper)other).node); if ((relationship & (Node.DOCUMENT_POSITION_PRECEDING | Node.DOCUMENT_POSITION_CONTAINS)) != 0) { return +1; } else if ((relationship & (Node.DOCUMENT_POSITION_FOLLOWING | Node.DOCUMENT_POSITION_CONTAINED_BY)) != 0) { return -1; } // otherwise use fallback implementation (e.g. nodes in different documents) } catch (DOMException e) { // can happen if nodes are from different DOM implementations. // use fallback implementation } } if (other instanceof SiblingCountingNode) { return Navigator.compareOrder(this, (SiblingCountingNode)other); } else { // it's presumably a Namespace Node return -other.compareOrder(this); } } /** * Return the string value of the node. The interpretation of this depends on the type * of node. For an element it is the accumulated character content of the element, * including descendant elements. * @return the string value of the node */ public String getStringValue() { return getStringValueCS().toString(); } /** * Get the value of the item as a CharSequence. This is in some cases more efficient than * the version of the method that returns a String. */ public CharSequence getStringValueCS() { switch (nodeKind) { case Type.DOCUMENT: case Type.ELEMENT: NodeList children1 = node.getChildNodes(); StringBuffer sb1 = new StringBuffer(16); expandStringValue(children1, sb1); return sb1; case Type.ATTRIBUTE: return ((Attr)node).getValue(); case Type.TEXT: if (span == 1) { return node.getNodeValue(); } else { FastStringBuffer fsb = new FastStringBuffer(100); Node textNode = node; for (int i=0; i= 0) { return n.substring(colon+1); } return n; } else { return s; } case Type.PROCESSING_INSTRUCTION: return node.getNodeName(); default: return null; } } /** * Get the URI part of the name of this node. This is the URI corresponding to the * prefix, or the URI of the default namespace if appropriate. * @return The URI of the namespace of this node. For an unnamed node, * or for a node with an empty prefix, return an empty * string. */ public String getURI() { NodeInfo element; if (nodeKind == Type.ELEMENT) { element = this; } else if (nodeKind == Type.ATTRIBUTE) { element = parent; } else { return ""; } // The DOM methods getPrefix() and getNamespaceURI() do not always // return the prefix and the URI; they both return null, unless the // prefix and URI have been explicitly set in the node by using DOM // level 2 interfaces. There's no obvious way of deciding whether // an element whose name has no prefix is in the default namespace, // other than searching for a default namespace declaration. So we have to // be prepared to search. // If getPrefix() and getNamespaceURI() are non-null, however, // we can use the values. String uri = node.getNamespaceURI(); if (uri != null) { return uri; } // Otherwise we have to work it out the hard way... if (node.getNodeName().startsWith("xml:")) { return NamespaceConstant.XML; } String[] parts; try { parts = Name11Checker.getInstance().getQNameParts(node.getNodeName()); // use the XML 1.1 rules: these will do because it should already have been checked } catch (QNameException e) { throw new IllegalStateException("Invalid QName in DOM node. " + e); } if (nodeKind == Type.ATTRIBUTE && parts[0].length() == 0) { // for an attribute, no prefix means no namespace uri = ""; } else { AxisIterator nsiter = element.iterateAxis(Axis.NAMESPACE); while (true) { NodeInfo ns = (NodeInfo)nsiter.next(); if (ns == null) break; if (ns.getLocalPart().equals(parts[0])) { uri = ns.getStringValue(); break; } } if (uri == null) { if (parts[0].length() == 0) { uri = ""; } else { throw new IllegalStateException("Undeclared namespace prefix in DOM input: " + parts[0]); } } } return uri; } /** * Get the prefix of the name of the node. This is defined only for elements and attributes. * If the node has no prefix, or for other kinds of node, return a zero-length string. * This implementation simply returns the prefix defined in the DOM model; this is nto strictly * accurate in all cases, but is good enough for the purpose. * @return The prefix of the name of the node. */ public String getPrefix() { return node.getPrefix(); } /** * Get the display name of this node. For elements and attributes this is [prefix:]localname. * For unnamed nodes, it is an empty string. * @return The display name of this node. * For a node with no name, return an empty string. */ public String getDisplayName() { switch (nodeKind) { case Type.ELEMENT: case Type.ATTRIBUTE: case Type.PROCESSING_INSTRUCTION: return node.getNodeName(); default: return ""; } } /** * Get the NodeInfo object representing the parent of this node */ public NodeInfo getParent() { if (parent==null) { switch (getNodeKind()) { case Type.ATTRIBUTE: parent = makeWrapper(((Attr)node).getOwnerElement(), docWrapper); break; default: Node p = node.getParentNode(); if (p==null) { return null; } else { parent = makeWrapper(p, docWrapper); } } } return parent; } /** * Get the index position of this node among its siblings (starting from 0). * In the case of a text node that maps to several adjacent siblings in the DOM, * the numbering actually refers to the position of the underlying DOM nodes; * thus the sibling position for the text node is that of the first DOM node * to which it relates, and the numbering of subsequent XPath nodes is not necessarily * consecutive. */ public int getSiblingPosition() { if (index == -1) { switch (nodeKind) { case Type.ELEMENT: case Type.TEXT: case Type.COMMENT: case Type.PROCESSING_INSTRUCTION: int ix = 0; Node start = node; while (true) { start = start.getPreviousSibling(); if (start == null) { index = ix; return ix; } ix++; } case Type.ATTRIBUTE: ix = 0; int fp = getFingerprint(); AxisIterator iter = parent.iterateAxis(Axis.ATTRIBUTE); while (true) { NodeInfo n = (NodeInfo)iter.next(); if (n==null || n.getFingerprint()==fp) { index = ix; return ix; } ix++; } case Type.NAMESPACE: ix = 0; fp = getFingerprint(); iter = parent.iterateAxis(Axis.NAMESPACE); while (true) { NodeInfo n = (NodeInfo)iter.next(); if (n==null || n.getFingerprint()==fp) { index = ix; return ix; } ix++; } default: index = 0; return index; } } return index; } /** * Return an iteration over the nodes reached by the given axis from this node * @param axisNumber the axis to be used * @return a SequenceIterator that scans the nodes reached by the axis in turn. */ public AxisIterator iterateAxis(byte axisNumber) { switch (axisNumber) { case Axis.ANCESTOR: if (nodeKind==Type.DOCUMENT) return EmptyIterator.getInstance(); return new Navigator.AncestorEnumeration(this, false); case Axis.ANCESTOR_OR_SELF: if (nodeKind==Type.DOCUMENT) return SingleNodeIterator.makeIterator(this); return new Navigator.AncestorEnumeration(this, true); case Axis.ATTRIBUTE: if (nodeKind!=Type.ELEMENT) return EmptyIterator.getInstance(); return new AttributeEnumeration(this); case Axis.CHILD: if (hasChildNodes()) { return new ChildEnumeration(this, true, true, false); } else { return EmptyIterator.getInstance(); } case Axis.DESCENDANT: if (hasChildNodes()) { return new Navigator.DescendantEnumeration(this, false, true); } else { return EmptyIterator.getInstance(); } case Axis.DESCENDANT_OR_SELF: return new Navigator.DescendantEnumeration(this, true, true); case Axis.FOLLOWING: return new Navigator.FollowingEnumeration(this); case Axis.FOLLOWING_SIBLING: switch (nodeKind) { case Type.DOCUMENT: case Type.ATTRIBUTE: case Type.NAMESPACE: return EmptyIterator.getInstance(); default: return new ChildEnumeration(this, false, true, false); } case Axis.NAMESPACE: if (nodeKind!=Type.ELEMENT) { return EmptyIterator.getInstance(); } return NamespaceIterator.makeIterator(this, null); case Axis.PARENT: getParent(); return SingleNodeIterator.makeIterator(parent); case Axis.PRECEDING: return new Navigator.PrecedingEnumeration(this, false); case Axis.PRECEDING_SIBLING: switch (nodeKind) { case Type.DOCUMENT: case Type.ATTRIBUTE: case Type.NAMESPACE: return EmptyIterator.getInstance(); default: return new ChildEnumeration(this, false, false, false); } case Axis.SELF: return SingleNodeIterator.makeIterator(this); case Axis.PRECEDING_OR_ANCESTOR: return new Navigator.PrecedingEnumeration(this, true); default: throw new IllegalArgumentException("Unknown axis number " + axisNumber); } } /** * Return an iteration over the nodes reached by the given axis from this node * @param axisNumber the axis to be used * @param nodeTest A pattern to be matched by the returned nodes * @return a SequenceIterator that scans the nodes reached by the axis in turn. */ public AxisIterator iterateAxis(byte axisNumber, NodeTest nodeTest) { if (axisNumber == Axis.CHILD && nodeTest.getPrimitiveType() == Type.ELEMENT) { // common case: avoid creating wrappers for the text nodes if (hasChildNodes()) { return new Navigator.AxisFilter( new ChildEnumeration(this, true, true, true), nodeTest); } else { return EmptyIterator.getInstance(); } } return new Navigator.AxisFilter(iterateAxis(axisNumber), nodeTest); } /** * Get the value of a given attribute of this node * @param fingerprint The fingerprint of the attribute name * @return the attribute value if it exists or null if not */ public String getAttributeValue(int fingerprint) { NameTest test = new NameTest(Type.ATTRIBUTE, fingerprint, getNamePool()); AxisIterator iterator = iterateAxis(Axis.ATTRIBUTE, test); NodeInfo attribute = (NodeInfo)iterator.next(); if (attribute == null) { return null; } else { return attribute.getStringValue(); } } /** * Get the root node - always a document node with this tree implementation * @return the NodeInfo representing the containing document */ public NodeInfo getRoot() { return docWrapper; } /** * Get the root (document) node * @return the DocumentInfo representing the containing document */ public DocumentInfo getDocumentRoot() { return docWrapper; } /** * Determine whether the node has any children.
* Note: the result is equivalent to
* getEnumeration(Axis.CHILD, AnyNodeTest.getInstance()).hasNext() */ public boolean hasChildNodes() { // An attribute node has child text nodes return node.getNodeType() != Node.ATTRIBUTE_NODE && node.hasChildNodes(); } /** * Get a character string that uniquely identifies this node. * Note: a.isSameNode(b) if and only if generateId(a)==generateId(b) * @param buffer a buffer to contain a string that uniquely identifies this node, across all * documents * */ public void generateId(FastStringBuffer buffer) { Navigator.appendSequentialKey(this, buffer, true); //buffer.append(Navigator.getSequentialKey(this)); } /** * Get the document number of the document containing this node. For a free-standing * orphan node, just return the hashcode. */ public int getDocumentNumber() { return getDocumentRoot().getDocumentNumber(); } /** * Copy this node to a given outputter (deep copy) */ public void copy(Receiver out, int whichNamespaces, boolean copyAnnotations, int locationId) throws XPathException { Navigator.copy(this, out, docWrapper.getNamePool(), whichNamespaces, copyAnnotations, locationId); } /** * Get all namespace undeclarations and undeclarations defined on this element. * * @param buffer If this is non-null, and the result array fits in this buffer, then the result * may overwrite the contents of this array, to avoid the cost of allocating a new array on the heap. * @return An array of integers representing the namespace declarations and undeclarations present on * this element. For a node other than an element, return null. Otherwise, the returned array is a * sequence of namespace codes, whose meaning may be interpreted by reference to the name pool. The * top half word of each namespace code represents the prefix, the bottom half represents the URI. * If the bottom half is zero, then this is a namespace undeclaration rather than a declaration. * The XML namespace is never included in the list. If the supplied array is larger than required, * then the first unused entry will be set to -1. *

*

For a node other than an element, the method returns null.

*/ public int[] getDeclaredNamespaces(int[] buffer) { if (node.getNodeType() == Node.ELEMENT_NODE) { Element elem = (Element)node; NamedNodeMap atts = elem.getAttributes(); if (atts == null) { return EMPTY_NAMESPACE_LIST; } int count = 0; final int attsLen = atts.getLength(); for (int i=0; i buffer.length ? new int[count] : buffer); NamePool pool = getNamePool(); int n = 0; for (int i=0; i= attList.size()) { return null; } current = start.makeWrapper( (Attr)attList.get(ix), docWrapper, start, ix); ix++; return current; } public Item current() { return current; } public int position() { return ix+1; } /** * Return an iterator over an axis, starting at the current node. * * @param axis the axis to iterate over, using a constant such as * {@link Axis#CHILD} * @param test a predicate to apply to the nodes before returning them. */ public AxisIterator iterateAxis(byte axis, NodeTest test) { return current.iterateAxis(axis, test); } /** * Return the atomized value of the current node. * * @return the atomized value. * @throws NullPointerException if there is no current node */ public Value atomize() throws XPathException { return current.atomize(); } /** * Return the string value of the current node. * * @return the string value, as an instance of CharSequence. * @throws NullPointerException if there is no current node */ public CharSequence getStringValue() { return current.getStringValueCS(); } public SequenceIterator getAnother() { return new AttributeEnumeration(start); } /** * Get properties of this iterator, as a bit-significant integer. * * @return the properties of this iterator. This will be some combination of * properties such as {@link #GROUNDED}, {@link #LAST_POSITION_FINDER}, * and {@link #LOOKAHEAD}. It is always * acceptable to return the value zero, indicating that there are no known special properties. * It is acceptable for the properties of the iterator to change depending on its state. */ public int getProperties() { return LOOKAHEAD; } } /** * The class ChildEnumeration handles not only the child axis, but also the * following-sibling and preceding-sibling axes. It can also iterate the children * of the start node in reverse order, something that is needed to support the * preceding and preceding-or-ancestor axes (the latter being used by xsl:number) */ private final class ChildEnumeration extends AxisIteratorImpl implements LookaheadIterator{ private NodeWrapper start; private NodeWrapper commonParent; private boolean downwards; // iterate children of start node (not siblings) private boolean forwards; // iterate in document order (not reverse order) private boolean elementsOnly; NodeList childNodes; private int childNodesLength; private int ix; // index of the current DOM node within childNodes; // in the case of adjacent text nodes, index of the first in the group private int currentSpan; // number of DOM nodes mapping to the current XPath node public ChildEnumeration(NodeWrapper start, boolean downwards, boolean forwards, boolean elementsOnly) { this.start = start; this.downwards = downwards; this.forwards = forwards; this.elementsOnly = elementsOnly; position = 0; currentSpan = 1; if (downwards) { commonParent = start; } else { commonParent = (NodeWrapper)start.getParent(); } childNodes = commonParent.node.getChildNodes(); childNodesLength = childNodes.getLength(); if (downwards) { currentSpan = 1; if (forwards) { ix = -1; // just before first } else { ix = childNodesLength; // just after last } } else { ix = start.getSiblingPosition(); // at current node currentSpan = start.span; } } /** * Starting with ix positioned at a node, which in the last in a span, calculate the length * of the span, that is the number of DOM nodes mapped to this XPath node. * @return the number of nodes spanned */ private int skipPrecedingTextNodes() { int count = 0; while (ix >= count) { Node node = childNodes.item(ix - count); short kind = node.getNodeType(); if (kind == Node.TEXT_NODE || kind == Node.CDATA_SECTION_NODE) { count++; } else { break; } } return (count == 0 ? 1 : count); } /** * Starting with ix positioned at a node, which in the first in a span, calculate the length * of the span, that is the number of DOM nodes mapped to this XPath node. * @return the number of nodes spanned */ private int skipFollowingTextNodes() { int count = 0; int pos = ix; final int len = childNodesLength; while (pos < len) { Node node = childNodes.item(pos); short kind = node.getNodeType(); if (kind == Node.TEXT_NODE || kind == Node.CDATA_SECTION_NODE) { pos++; count++; } else { break; } } return (count == 0 ? 1 : count); } public boolean hasNext() { if (forwards) { return ix + currentSpan < childNodesLength; } else { return ix > 0; } } public Item next() { while (true) { if (forwards) { ix += currentSpan; if (ix >= childNodesLength) { return null; } else { currentSpan = skipFollowingTextNodes(); Node currentDomNode = childNodes.item(ix); switch (currentDomNode.getNodeType()) { case Node.DOCUMENT_TYPE_NODE: continue; case Node.ELEMENT_NODE: break; default: if (elementsOnly) { continue; } else { break; } } NodeWrapper wrapper = makeWrapper(currentDomNode, docWrapper, commonParent, ix); wrapper.span = currentSpan; return current = wrapper; } } else { ix--; if (ix < 0) { return null; } else { currentSpan = skipPrecedingTextNodes(); ix -= (currentSpan - 1); Node currentDomNode = childNodes.item(ix); switch (currentDomNode.getNodeType()) { case Node.DOCUMENT_TYPE_NODE: continue; case Node.ELEMENT_NODE: break; default: if (elementsOnly) { continue; } else { break; } } NodeWrapper wrapper = makeWrapper(currentDomNode, docWrapper, commonParent, ix); wrapper.span = currentSpan; return current = wrapper; } } } } public SequenceIterator getAnother() { return new ChildEnumeration(start, downwards, forwards, elementsOnly); } /** * Get properties of this iterator, as a bit-significant integer. * * @return the properties of this iterator. This will be some combination of * properties such as {@link #GROUNDED}, {@link #LAST_POSITION_FINDER}, * and {@link #LOOKAHEAD}. It is always * acceptable to return the value zero, indicating that there are no known special properties. * It is acceptable for the properties of the iterator to change depending on its state. */ public int getProperties() { return LOOKAHEAD; } } // end of class ChildEnumeration /** * The class ChildEnumeration handles not only the child axis, but also the * following-sibling and preceding-sibling axes. It can also iterate the children * of the start node in reverse order, something that is needed to support the * preceding and preceding-or-ancestor axes (the latter being used by xsl:number) */ // private final class ChildEnumerationOLD extends AxisIteratorImpl implements LookaheadIterator{ // // private NodeWrapper start; // private NodeWrapper commonParent; // private ArrayList items = new ArrayList(20); // private int ix = 0; // private boolean downwards; // iterate children of start node (not siblings) // private boolean forwards; // iterate in document order (not reverse order) // // public ChildEnumerationOLD(NodeWrapper start, // boolean downwards, boolean forwards) { // this.start = start; // this.downwards = downwards; // this.forwards = forwards; // position = 0; // // if (downwards) { // commonParent = start; // } else { // commonParent = (NodeWrapper)start.getParent(); // } // // NodeList childNodes = commonParent.node.getChildNodes(); // if (downwards) { // if (!forwards) { // // backwards enumeration: go to the end // ix = childNodes.getLength() - 1; // } // } else { // ix = start.getSiblingPosition() + (forwards ? span : -1); // } // // if (forwards) { // boolean previousText = false; // final int len = childNodes.getLength(); // for (int i=ix; i=0; i--) { // boolean thisText = false; // Node node = childNodes.item(i); // switch (node.getNodeType()) { // case Node.DOCUMENT_TYPE_NODE: // break; // case Node.TEXT_NODE: // case Node.CDATA_SECTION_NODE: // thisText = true; // if (previousText) { // NodeWrapper old = ((NodeWrapper)items.get(items.size()-1)); // old.node = node; // old.span++; // break; // } // // otherwise fall through to default case // default: // previousText = thisText; // items.add(makeWrapper(node, docWrapper, commonParent, i)); // } // } // } // } // // public boolean hasNext() { // return position < items.size(); // } // // public Item next() { // if (position < items.size()) { // current = (NodeInfo)items.get(position++); // return current; // } else { // return null; // } // } // // public SequenceIterator getAnother() { // return new ChildEnumeration(start, downwards, forwards); // } // // /** // * Get properties of this iterator, as a bit-significant integer. // * // * @return the properties of this iterator. This will be some combination of // * properties such as {@link #GROUNDED}, {@link #LAST_POSITION_FINDER}, // * and {@link #LOOKAHEAD}. It is always // * acceptable to return the value zero, indicating that there are no known special properties. // * It is acceptable for the properties of the iterator to change depending on its state. // */ // // public int getProperties() { // return LOOKAHEAD; // } // // } // end of class ChildEnumeration } // // The contents of this file are subject to the Mozilla Public License Version 1.0 (the "License"); // you may not use this file except in compliance with the License. You may obtain a copy of the // License at http://www.mozilla.org/MPL/ // // Software distributed under the License is distributed on an "AS IS" basis, // WITHOUT WARRANTY OF ANY KIND, either express or implied. // See the License for the specific language governing rights and limitations under the License. // // The Original Code is: all this file. // // The Initial Developer of the Original Code is Michael Kay // // Portions created by (your name) are Copyright (C) (your legal entity). All Rights Reserved. // // Contributor(s): none. //




© 2015 - 2025 Weber Informatics LLC | Privacy Policy