net.sf.saxon.dom.NodeWrapper Maven / Gradle / Ivy
Show all versions of saxon9 Show documentation
package net.sf.saxon.dom;
import net.sf.saxon.Configuration;
import net.sf.saxon.event.Receiver;
import net.sf.saxon.om.*;
import net.sf.saxon.pattern.NameTest;
import net.sf.saxon.pattern.NodeTest;
import net.sf.saxon.trans.XPathException;
import net.sf.saxon.type.Type;
import net.sf.saxon.value.AtomicValue;
import net.sf.saxon.value.StringValue;
import net.sf.saxon.value.UntypedAtomicValue;
import net.sf.saxon.value.Value;
import org.w3c.dom.*;
import java.util.ArrayList;
/**
* A node in the XML parse tree representing an XML element, character content, or attribute.
* This is the implementation of the NodeInfo interface used as a wrapper for DOM nodes.
*/
public class NodeWrapper implements NodeInfo, VirtualNode, SiblingCountingNode {
protected Node node;
private int namecode = -1;
protected short nodeKind;
private NodeWrapper parent; // null means unknown
protected DocumentWrapper docWrapper;
protected int index; // -1 means unknown
protected int span = 1; // the number of adjacent text nodes wrapped by this NodeWrapper.
// If span>1, node will always be the first of a sequence of adjacent text nodes
/**
* This constructor is protected: nodes should be created using the makeWrapper
* factory method
* @param node The DOM node to be wrapped
* @param parent The NodeWrapper that wraps the parent of this node
* @param index Position of this node among its siblings
*/
protected NodeWrapper(Node node, NodeWrapper parent, int index) {
this.node = node;
this.parent = parent;
this.index = index;
}
/**
* Factory method to wrap a DOM node with a wrapper that implements the Saxon
* NodeInfo interface.
* @param node The DOM node
* @param docWrapper The wrapper for the containing Document node
* @return The new wrapper for the supplied node
* @throws NullPointerException if the node or the document wrapper are null
*/
protected NodeWrapper makeWrapper(Node node, DocumentWrapper docWrapper) {
if (node == null) {
throw new NullPointerException("NodeWrapper#makeWrapper: Node must not be null");
}
if (docWrapper == null) {
throw new NullPointerException("NodeWrapper#makeWrapper: DocumentWrapper must not be null");
}
return makeWrapper(node, docWrapper, null, -1);
}
/**
* Factory method to wrap a DOM node with a wrapper that implements the Saxon
* NodeInfo interface.
* @param node The DOM node
* @param docWrapper The wrapper for the containing Document node *
* @param parent The wrapper for the parent of the JDOM node
* @param index The position of this node relative to its siblings
* @return The new wrapper for the supplied node
*/
protected NodeWrapper makeWrapper(Node node, DocumentWrapper docWrapper,
NodeWrapper parent, int index) {
NodeWrapper wrapper;
switch (node.getNodeType()) {
case Node.DOCUMENT_NODE:
case Node.DOCUMENT_FRAGMENT_NODE:
return docWrapper;
case Node.ELEMENT_NODE:
wrapper = new NodeWrapper(node, parent, index);
wrapper.nodeKind = Type.ELEMENT;
break;
case Node.ATTRIBUTE_NODE:
wrapper = new NodeWrapper(node, parent, index);
wrapper.nodeKind = Type.ATTRIBUTE;
break;
case Node.TEXT_NODE:
wrapper = new NodeWrapper(node, parent, index);
wrapper.nodeKind = Type.TEXT;
break;
case Node.CDATA_SECTION_NODE:
wrapper = new NodeWrapper(node, parent, index);
wrapper.nodeKind = Type.TEXT;
break;
case Node.COMMENT_NODE:
wrapper = new NodeWrapper(node, parent, index);
wrapper.nodeKind = Type.COMMENT;
break;
case Node.PROCESSING_INSTRUCTION_NODE:
wrapper = new NodeWrapper(node, parent, index);
wrapper.nodeKind = Type.PROCESSING_INSTRUCTION;
break;
default:
throw new IllegalArgumentException("Unsupported node type in DOM! " + node.getNodeType() + " instance " + node.toString());
}
wrapper.docWrapper = docWrapper;
return wrapper;
}
/**
* Get the underlying DOM node, to implement the VirtualNode interface
*/
public Object getUnderlyingNode() {
return node;
}
/**
* Get the configuration
*/
public Configuration getConfiguration() {
return docWrapper.getConfiguration();
}
/**
* Get the name pool for this node
* @return the NamePool
*/
public NamePool getNamePool() {
return docWrapper.getNamePool();
}
/**
* Return the type of node.
* @return one of the values Node.ELEMENT, Node.TEXT, Node.ATTRIBUTE, etc.
*/
public int getNodeKind() {
return nodeKind;
}
/**
* Get the typed value of the item
*/
public SequenceIterator getTypedValue() {
return SingletonIterator.makeIterator((AtomicValue)atomize());
}
/**
* Get the typed value. The result of this method will always be consistent with the method
* {@link net.sf.saxon.om.Item#getTypedValue()}. However, this method is often more convenient and may be
* more efficient, especially in the common case where the value is expected to be a singleton.
*
* @return the typed value. If requireSingleton is set to true, the result will always be an
* AtomicValue. In other cases it may be a Value representing a sequence whose items are atomic
* values.
* @since 8.5
*/
public Value atomize() {
switch (getNodeKind()) {
case Type.COMMENT:
case Type.PROCESSING_INSTRUCTION:
return new StringValue(getStringValueCS());
default:
return new UntypedAtomicValue(getStringValueCS());
}
}
/**
* Get the type annotation
*/
public int getTypeAnnotation() {
if (getNodeKind() == Type.ATTRIBUTE) {
return StandardNames.XS_UNTYPED_ATOMIC;
}
return StandardNames.XS_UNTYPED;
}
/**
* Determine whether this is the same node as another node.
* Note: a.isSameNodeInfo(b) if and only if generateId(a)==generateId(b)
* @return true if this Node object and the supplied Node object represent the
* same node in the tree.
*/
public boolean isSameNodeInfo(NodeInfo other) {
if (!(other instanceof NodeWrapper)) {
return false;
}
if (docWrapper.domLevel3) {
return node.isSameNode(((NodeWrapper)other).node);
} else {
NodeWrapper ow = (NodeWrapper)other;
return getNodeKind()==ow.getNodeKind() &&
getNameCode()==ow.getNameCode() && // redundant, but gives a quick exit
getSiblingPosition()==ow.getSiblingPosition() &&
getParent().isSameNodeInfo(ow.getParent());
}
}
/**
* The equals() method compares nodes for identity. It is defined to give the same result
* as isSameNodeInfo().
* @param other the node to be compared with this node
* @return true if this NodeInfo object and the supplied NodeInfo object represent
* the same node in the tree.
* @since 8.7 Previously, the effect of the equals() method was not defined. Callers
* should therefore be aware that third party implementations of the NodeInfo interface may
* not implement the correct semantics. It is safer to use isSameNodeInfo() for this reason.
* The equals() method has been defined because it is useful in contexts such as a Java Set or HashMap.
*/
public boolean equals(Object other) {
return other instanceof NodeInfo && isSameNodeInfo((NodeInfo)other);
}
/**
* The hashCode() method obeys the contract for hashCode(): that is, if two objects are equal
* (represent the same node) then they must have the same hashCode()
* @since 8.7 Previously, the effect of the equals() and hashCode() methods was not defined. Callers
* should therefore be aware that third party implementations of the NodeInfo interface may
* not implement the correct semantics.
*/
public int hashCode() {
FastStringBuffer buffer = new FastStringBuffer(20);
generateId(buffer);
return buffer.toString().hashCode();
}
/**
* Get the System ID for the node.
* @return the System Identifier of the entity in the source document containing the node,
* or null if not known. Note this is not the same as the base URI: the base URI can be
* modified by xml:base, but the system ID cannot.
*/
public String getSystemId() {
return docWrapper.baseURI;
}
public void setSystemId(String uri) {
docWrapper.baseURI = uri;
}
/**
* Get the Base URI for the node, that is, the URI used for resolving a relative URI contained
* in the node. In the DOM model, base URIs are held only an the document level.
*/
public String getBaseURI() {
NodeInfo n = this;
if (getNodeKind() != Type.ELEMENT) {
n = getParent();
}
// Look for an xml:base attribute
while (n != null) {
String xmlbase = n.getAttributeValue(StandardNames.XML_BASE);
if (xmlbase != null) {
return xmlbase;
}
n = n.getParent();
}
// if not found, return the base URI of the document node
return docWrapper.baseURI;
}
/**
* Get line number
* @return the line number of the node in its original source document; or -1 if not available
*/
public int getLineNumber() {
return -1;
}
/**
* Determine the relative position of this node and another node, in document order.
* The other node will always be in the same document.
* @param other The other node, whose position is to be compared with this node
* @return -1 if this node precedes the other node, +1 if it follows the other
* node, or 0 if they are the same node. (In this case, isSameNode() will always
* return true, and the two nodes will produce the same result for generateId())
*/
public int compareOrder(NodeInfo other) {
// Use the DOM Level-3 compareDocumentPosition() method
if (other instanceof NodeWrapper && docWrapper.domLevel3) {
if (isSameNodeInfo(other)) {
return 0;
}
try {
short relationship = node.compareDocumentPosition(((NodeWrapper)other).node);
if ((relationship &
(Node.DOCUMENT_POSITION_PRECEDING | Node.DOCUMENT_POSITION_CONTAINS)) != 0) {
return +1;
} else if ((relationship &
(Node.DOCUMENT_POSITION_FOLLOWING | Node.DOCUMENT_POSITION_CONTAINED_BY)) != 0) {
return -1;
}
// otherwise use fallback implementation (e.g. nodes in different documents)
} catch (DOMException e) {
// can happen if nodes are from different DOM implementations.
// use fallback implementation
}
}
if (other instanceof SiblingCountingNode) {
return Navigator.compareOrder(this, (SiblingCountingNode)other);
} else {
// it's presumably a Namespace Node
return -other.compareOrder(this);
}
}
/**
* Return the string value of the node. The interpretation of this depends on the type
* of node. For an element it is the accumulated character content of the element,
* including descendant elements.
* @return the string value of the node
*/
public String getStringValue() {
return getStringValueCS().toString();
}
/**
* Get the value of the item as a CharSequence. This is in some cases more efficient than
* the version of the method that returns a String.
*/
public CharSequence getStringValueCS() {
switch (nodeKind) {
case Type.DOCUMENT:
case Type.ELEMENT:
NodeList children1 = node.getChildNodes();
StringBuffer sb1 = new StringBuffer(16);
expandStringValue(children1, sb1);
return sb1;
case Type.ATTRIBUTE:
return ((Attr)node).getValue();
case Type.TEXT:
if (span == 1) {
return node.getNodeValue();
} else {
FastStringBuffer fsb = new FastStringBuffer(100);
Node textNode = node;
for (int i=0; i= 0) {
return n.substring(colon+1);
}
return n;
} else {
return s;
}
case Type.PROCESSING_INSTRUCTION:
return node.getNodeName();
default:
return null;
}
}
/**
* Get the URI part of the name of this node. This is the URI corresponding to the
* prefix, or the URI of the default namespace if appropriate.
* @return The URI of the namespace of this node. For an unnamed node,
* or for a node with an empty prefix, return an empty
* string.
*/
public String getURI() {
NodeInfo element;
if (nodeKind == Type.ELEMENT) {
element = this;
} else if (nodeKind == Type.ATTRIBUTE) {
element = parent;
} else {
return "";
}
// The DOM methods getPrefix() and getNamespaceURI() do not always
// return the prefix and the URI; they both return null, unless the
// prefix and URI have been explicitly set in the node by using DOM
// level 2 interfaces. There's no obvious way of deciding whether
// an element whose name has no prefix is in the default namespace,
// other than searching for a default namespace declaration. So we have to
// be prepared to search.
// If getPrefix() and getNamespaceURI() are non-null, however,
// we can use the values.
String uri = node.getNamespaceURI();
if (uri != null) {
return uri;
}
// Otherwise we have to work it out the hard way...
if (node.getNodeName().startsWith("xml:")) {
return NamespaceConstant.XML;
}
String[] parts;
try {
parts = Name11Checker.getInstance().getQNameParts(node.getNodeName());
// use the XML 1.1 rules: these will do because it should already have been checked
} catch (QNameException e) {
throw new IllegalStateException("Invalid QName in DOM node. " + e);
}
if (nodeKind == Type.ATTRIBUTE && parts[0].length() == 0) {
// for an attribute, no prefix means no namespace
uri = "";
} else {
AxisIterator nsiter = element.iterateAxis(Axis.NAMESPACE);
while (true) {
NodeInfo ns = (NodeInfo)nsiter.next();
if (ns == null) break;
if (ns.getLocalPart().equals(parts[0])) {
uri = ns.getStringValue();
break;
}
}
if (uri == null) {
if (parts[0].length() == 0) {
uri = "";
} else {
throw new IllegalStateException("Undeclared namespace prefix in DOM input: " + parts[0]);
}
}
}
return uri;
}
/**
* Get the prefix of the name of the node. This is defined only for elements and attributes.
* If the node has no prefix, or for other kinds of node, return a zero-length string.
* This implementation simply returns the prefix defined in the DOM model; this is nto strictly
* accurate in all cases, but is good enough for the purpose.
* @return The prefix of the name of the node.
*/
public String getPrefix() {
return node.getPrefix();
}
/**
* Get the display name of this node. For elements and attributes this is [prefix:]localname.
* For unnamed nodes, it is an empty string.
* @return The display name of this node.
* For a node with no name, return an empty string.
*/
public String getDisplayName() {
switch (nodeKind) {
case Type.ELEMENT:
case Type.ATTRIBUTE:
case Type.PROCESSING_INSTRUCTION:
return node.getNodeName();
default:
return "";
}
}
/**
* Get the NodeInfo object representing the parent of this node
*/
public NodeInfo getParent() {
if (parent==null) {
switch (getNodeKind()) {
case Type.ATTRIBUTE:
parent = makeWrapper(((Attr)node).getOwnerElement(), docWrapper);
break;
default:
Node p = node.getParentNode();
if (p==null) {
return null;
} else {
parent = makeWrapper(p, docWrapper);
}
}
}
return parent;
}
/**
* Get the index position of this node among its siblings (starting from 0).
* In the case of a text node that maps to several adjacent siblings in the DOM,
* the numbering actually refers to the position of the underlying DOM nodes;
* thus the sibling position for the text node is that of the first DOM node
* to which it relates, and the numbering of subsequent XPath nodes is not necessarily
* consecutive.
*/
public int getSiblingPosition() {
if (index == -1) {
switch (nodeKind) {
case Type.ELEMENT:
case Type.TEXT:
case Type.COMMENT:
case Type.PROCESSING_INSTRUCTION:
int ix = 0;
Node start = node;
while (true) {
start = start.getPreviousSibling();
if (start == null) {
index = ix;
return ix;
}
ix++;
}
case Type.ATTRIBUTE:
ix = 0;
int fp = getFingerprint();
AxisIterator iter = parent.iterateAxis(Axis.ATTRIBUTE);
while (true) {
NodeInfo n = (NodeInfo)iter.next();
if (n==null || n.getFingerprint()==fp) {
index = ix;
return ix;
}
ix++;
}
case Type.NAMESPACE:
ix = 0;
fp = getFingerprint();
iter = parent.iterateAxis(Axis.NAMESPACE);
while (true) {
NodeInfo n = (NodeInfo)iter.next();
if (n==null || n.getFingerprint()==fp) {
index = ix;
return ix;
}
ix++;
}
default:
index = 0;
return index;
}
}
return index;
}
/**
* Return an iteration over the nodes reached by the given axis from this node
* @param axisNumber the axis to be used
* @return a SequenceIterator that scans the nodes reached by the axis in turn.
*/
public AxisIterator iterateAxis(byte axisNumber) {
switch (axisNumber) {
case Axis.ANCESTOR:
if (nodeKind==Type.DOCUMENT) return EmptyIterator.getInstance();
return new Navigator.AncestorEnumeration(this, false);
case Axis.ANCESTOR_OR_SELF:
if (nodeKind==Type.DOCUMENT) return SingleNodeIterator.makeIterator(this);
return new Navigator.AncestorEnumeration(this, true);
case Axis.ATTRIBUTE:
if (nodeKind!=Type.ELEMENT) return EmptyIterator.getInstance();
return new AttributeEnumeration(this);
case Axis.CHILD:
if (hasChildNodes()) {
return new ChildEnumeration(this, true, true, false);
} else {
return EmptyIterator.getInstance();
}
case Axis.DESCENDANT:
if (hasChildNodes()) {
return new Navigator.DescendantEnumeration(this, false, true);
} else {
return EmptyIterator.getInstance();
}
case Axis.DESCENDANT_OR_SELF:
return new Navigator.DescendantEnumeration(this, true, true);
case Axis.FOLLOWING:
return new Navigator.FollowingEnumeration(this);
case Axis.FOLLOWING_SIBLING:
switch (nodeKind) {
case Type.DOCUMENT:
case Type.ATTRIBUTE:
case Type.NAMESPACE:
return EmptyIterator.getInstance();
default:
return new ChildEnumeration(this, false, true, false);
}
case Axis.NAMESPACE:
if (nodeKind!=Type.ELEMENT) {
return EmptyIterator.getInstance();
}
return NamespaceIterator.makeIterator(this, null);
case Axis.PARENT:
getParent();
return SingleNodeIterator.makeIterator(parent);
case Axis.PRECEDING:
return new Navigator.PrecedingEnumeration(this, false);
case Axis.PRECEDING_SIBLING:
switch (nodeKind) {
case Type.DOCUMENT:
case Type.ATTRIBUTE:
case Type.NAMESPACE:
return EmptyIterator.getInstance();
default:
return new ChildEnumeration(this, false, false, false);
}
case Axis.SELF:
return SingleNodeIterator.makeIterator(this);
case Axis.PRECEDING_OR_ANCESTOR:
return new Navigator.PrecedingEnumeration(this, true);
default:
throw new IllegalArgumentException("Unknown axis number " + axisNumber);
}
}
/**
* Return an iteration over the nodes reached by the given axis from this node
* @param axisNumber the axis to be used
* @param nodeTest A pattern to be matched by the returned nodes
* @return a SequenceIterator that scans the nodes reached by the axis in turn.
*/
public AxisIterator iterateAxis(byte axisNumber, NodeTest nodeTest) {
if (axisNumber == Axis.CHILD && nodeTest.getPrimitiveType() == Type.ELEMENT) {
// common case: avoid creating wrappers for the text nodes
if (hasChildNodes()) {
return new Navigator.AxisFilter(
new ChildEnumeration(this, true, true, true), nodeTest);
} else {
return EmptyIterator.getInstance();
}
}
return new Navigator.AxisFilter(iterateAxis(axisNumber), nodeTest);
}
/**
* Get the value of a given attribute of this node
* @param fingerprint The fingerprint of the attribute name
* @return the attribute value if it exists or null if not
*/
public String getAttributeValue(int fingerprint) {
NameTest test = new NameTest(Type.ATTRIBUTE, fingerprint, getNamePool());
AxisIterator iterator = iterateAxis(Axis.ATTRIBUTE, test);
NodeInfo attribute = (NodeInfo)iterator.next();
if (attribute == null) {
return null;
} else {
return attribute.getStringValue();
}
}
/**
* Get the root node - always a document node with this tree implementation
* @return the NodeInfo representing the containing document
*/
public NodeInfo getRoot() {
return docWrapper;
}
/**
* Get the root (document) node
* @return the DocumentInfo representing the containing document
*/
public DocumentInfo getDocumentRoot() {
return docWrapper;
}
/**
* Determine whether the node has any children.
* Note: the result is equivalent to
* getEnumeration(Axis.CHILD, AnyNodeTest.getInstance()).hasNext()
*/
public boolean hasChildNodes() {
// An attribute node has child text nodes
return node.getNodeType() != Node.ATTRIBUTE_NODE && node.hasChildNodes();
}
/**
* Get a character string that uniquely identifies this node.
* Note: a.isSameNode(b) if and only if generateId(a)==generateId(b)
* @param buffer a buffer to contain a string that uniquely identifies this node, across all
* documents
*
*/
public void generateId(FastStringBuffer buffer) {
Navigator.appendSequentialKey(this, buffer, true);
//buffer.append(Navigator.getSequentialKey(this));
}
/**
* Get the document number of the document containing this node. For a free-standing
* orphan node, just return the hashcode.
*/
public int getDocumentNumber() {
return getDocumentRoot().getDocumentNumber();
}
/**
* Copy this node to a given outputter (deep copy)
*/
public void copy(Receiver out, int whichNamespaces, boolean copyAnnotations, int locationId) throws XPathException {
Navigator.copy(this, out, docWrapper.getNamePool(), whichNamespaces, copyAnnotations, locationId);
}
/**
* Get all namespace undeclarations and undeclarations defined on this element.
*
* @param buffer If this is non-null, and the result array fits in this buffer, then the result
* may overwrite the contents of this array, to avoid the cost of allocating a new array on the heap.
* @return An array of integers representing the namespace declarations and undeclarations present on
* this element. For a node other than an element, return null. Otherwise, the returned array is a
* sequence of namespace codes, whose meaning may be interpreted by reference to the name pool. The
* top half word of each namespace code represents the prefix, the bottom half represents the URI.
* If the bottom half is zero, then this is a namespace undeclaration rather than a declaration.
* The XML namespace is never included in the list. If the supplied array is larger than required,
* then the first unused entry will be set to -1.
*
* For a node other than an element, the method returns null.
*/
public int[] getDeclaredNamespaces(int[] buffer) {
if (node.getNodeType() == Node.ELEMENT_NODE) {
Element elem = (Element)node;
NamedNodeMap atts = elem.getAttributes();
if (atts == null) {
return EMPTY_NAMESPACE_LIST;
}
int count = 0;
final int attsLen = atts.getLength();
for (int i=0; i buffer.length ? new int[count] : buffer);
NamePool pool = getNamePool();
int n = 0;
for (int i=0; i= attList.size()) {
return null;
}
current = start.makeWrapper(
(Attr)attList.get(ix), docWrapper, start, ix);
ix++;
return current;
}
public Item current() {
return current;
}
public int position() {
return ix+1;
}
/**
* Return an iterator over an axis, starting at the current node.
*
* @param axis the axis to iterate over, using a constant such as
* {@link Axis#CHILD}
* @param test a predicate to apply to the nodes before returning them.
*/
public AxisIterator iterateAxis(byte axis, NodeTest test) {
return current.iterateAxis(axis, test);
}
/**
* Return the atomized value of the current node.
*
* @return the atomized value.
* @throws NullPointerException if there is no current node
*/
public Value atomize() throws XPathException {
return current.atomize();
}
/**
* Return the string value of the current node.
*
* @return the string value, as an instance of CharSequence.
* @throws NullPointerException if there is no current node
*/
public CharSequence getStringValue() {
return current.getStringValueCS();
}
public SequenceIterator getAnother() {
return new AttributeEnumeration(start);
}
/**
* Get properties of this iterator, as a bit-significant integer.
*
* @return the properties of this iterator. This will be some combination of
* properties such as {@link #GROUNDED}, {@link #LAST_POSITION_FINDER},
* and {@link #LOOKAHEAD}. It is always
* acceptable to return the value zero, indicating that there are no known special properties.
* It is acceptable for the properties of the iterator to change depending on its state.
*/
public int getProperties() {
return LOOKAHEAD;
}
}
/**
* The class ChildEnumeration handles not only the child axis, but also the
* following-sibling and preceding-sibling axes. It can also iterate the children
* of the start node in reverse order, something that is needed to support the
* preceding and preceding-or-ancestor axes (the latter being used by xsl:number)
*/
private final class ChildEnumeration extends AxisIteratorImpl implements LookaheadIterator{
private NodeWrapper start;
private NodeWrapper commonParent;
private boolean downwards; // iterate children of start node (not siblings)
private boolean forwards; // iterate in document order (not reverse order)
private boolean elementsOnly;
NodeList childNodes;
private int childNodesLength;
private int ix; // index of the current DOM node within childNodes;
// in the case of adjacent text nodes, index of the first in the group
private int currentSpan; // number of DOM nodes mapping to the current XPath node
public ChildEnumeration(NodeWrapper start,
boolean downwards, boolean forwards, boolean elementsOnly) {
this.start = start;
this.downwards = downwards;
this.forwards = forwards;
this.elementsOnly = elementsOnly;
position = 0;
currentSpan = 1;
if (downwards) {
commonParent = start;
} else {
commonParent = (NodeWrapper)start.getParent();
}
childNodes = commonParent.node.getChildNodes();
childNodesLength = childNodes.getLength();
if (downwards) {
currentSpan = 1;
if (forwards) {
ix = -1; // just before first
} else {
ix = childNodesLength; // just after last
}
} else {
ix = start.getSiblingPosition(); // at current node
currentSpan = start.span;
}
}
/**
* Starting with ix positioned at a node, which in the last in a span, calculate the length
* of the span, that is the number of DOM nodes mapped to this XPath node.
* @return the number of nodes spanned
*/
private int skipPrecedingTextNodes() {
int count = 0;
while (ix >= count) {
Node node = childNodes.item(ix - count);
short kind = node.getNodeType();
if (kind == Node.TEXT_NODE || kind == Node.CDATA_SECTION_NODE) {
count++;
} else {
break;
}
}
return (count == 0 ? 1 : count);
}
/**
* Starting with ix positioned at a node, which in the first in a span, calculate the length
* of the span, that is the number of DOM nodes mapped to this XPath node.
* @return the number of nodes spanned
*/
private int skipFollowingTextNodes() {
int count = 0;
int pos = ix;
final int len = childNodesLength;
while (pos < len) {
Node node = childNodes.item(pos);
short kind = node.getNodeType();
if (kind == Node.TEXT_NODE || kind == Node.CDATA_SECTION_NODE) {
pos++;
count++;
} else {
break;
}
}
return (count == 0 ? 1 : count);
}
public boolean hasNext() {
if (forwards) {
return ix + currentSpan < childNodesLength;
} else {
return ix > 0;
}
}
public Item next() {
while (true) {
if (forwards) {
ix += currentSpan;
if (ix >= childNodesLength) {
return null;
} else {
currentSpan = skipFollowingTextNodes();
Node currentDomNode = childNodes.item(ix);
switch (currentDomNode.getNodeType()) {
case Node.DOCUMENT_TYPE_NODE:
continue;
case Node.ELEMENT_NODE:
break;
default:
if (elementsOnly) {
continue;
} else {
break;
}
}
NodeWrapper wrapper = makeWrapper(currentDomNode, docWrapper, commonParent, ix);
wrapper.span = currentSpan;
return current = wrapper;
}
} else {
ix--;
if (ix < 0) {
return null;
} else {
currentSpan = skipPrecedingTextNodes();
ix -= (currentSpan - 1);
Node currentDomNode = childNodes.item(ix);
switch (currentDomNode.getNodeType()) {
case Node.DOCUMENT_TYPE_NODE:
continue;
case Node.ELEMENT_NODE:
break;
default:
if (elementsOnly) {
continue;
} else {
break;
}
}
NodeWrapper wrapper = makeWrapper(currentDomNode, docWrapper, commonParent, ix);
wrapper.span = currentSpan;
return current = wrapper;
}
}
}
}
public SequenceIterator getAnother() {
return new ChildEnumeration(start, downwards, forwards, elementsOnly);
}
/**
* Get properties of this iterator, as a bit-significant integer.
*
* @return the properties of this iterator. This will be some combination of
* properties such as {@link #GROUNDED}, {@link #LAST_POSITION_FINDER},
* and {@link #LOOKAHEAD}. It is always
* acceptable to return the value zero, indicating that there are no known special properties.
* It is acceptable for the properties of the iterator to change depending on its state.
*/
public int getProperties() {
return LOOKAHEAD;
}
} // end of class ChildEnumeration
/**
* The class ChildEnumeration handles not only the child axis, but also the
* following-sibling and preceding-sibling axes. It can also iterate the children
* of the start node in reverse order, something that is needed to support the
* preceding and preceding-or-ancestor axes (the latter being used by xsl:number)
*/
// private final class ChildEnumerationOLD extends AxisIteratorImpl implements LookaheadIterator{
//
// private NodeWrapper start;
// private NodeWrapper commonParent;
// private ArrayList items = new ArrayList(20);
// private int ix = 0;
// private boolean downwards; // iterate children of start node (not siblings)
// private boolean forwards; // iterate in document order (not reverse order)
//
// public ChildEnumerationOLD(NodeWrapper start,
// boolean downwards, boolean forwards) {
// this.start = start;
// this.downwards = downwards;
// this.forwards = forwards;
// position = 0;
//
// if (downwards) {
// commonParent = start;
// } else {
// commonParent = (NodeWrapper)start.getParent();
// }
//
// NodeList childNodes = commonParent.node.getChildNodes();
// if (downwards) {
// if (!forwards) {
// // backwards enumeration: go to the end
// ix = childNodes.getLength() - 1;
// }
// } else {
// ix = start.getSiblingPosition() + (forwards ? span : -1);
// }
//
// if (forwards) {
// boolean previousText = false;
// final int len = childNodes.getLength();
// for (int i=ix; i=0; i--) {
// boolean thisText = false;
// Node node = childNodes.item(i);
// switch (node.getNodeType()) {
// case Node.DOCUMENT_TYPE_NODE:
// break;
// case Node.TEXT_NODE:
// case Node.CDATA_SECTION_NODE:
// thisText = true;
// if (previousText) {
// NodeWrapper old = ((NodeWrapper)items.get(items.size()-1));
// old.node = node;
// old.span++;
// break;
// }
// // otherwise fall through to default case
// default:
// previousText = thisText;
// items.add(makeWrapper(node, docWrapper, commonParent, i));
// }
// }
// }
// }
//
// public boolean hasNext() {
// return position < items.size();
// }
//
// public Item next() {
// if (position < items.size()) {
// current = (NodeInfo)items.get(position++);
// return current;
// } else {
// return null;
// }
// }
//
// public SequenceIterator getAnother() {
// return new ChildEnumeration(start, downwards, forwards);
// }
//
// /**
// * Get properties of this iterator, as a bit-significant integer.
// *
// * @return the properties of this iterator. This will be some combination of
// * properties such as {@link #GROUNDED}, {@link #LAST_POSITION_FINDER},
// * and {@link #LOOKAHEAD}. It is always
// * acceptable to return the value zero, indicating that there are no known special properties.
// * It is acceptable for the properties of the iterator to change depending on its state.
// */
//
// public int getProperties() {
// return LOOKAHEAD;
// }
//
// } // end of class ChildEnumeration
}
//
// The contents of this file are subject to the Mozilla Public License Version 1.0 (the "License");
// you may not use this file except in compliance with the License. You may obtain a copy of the
// License at http://www.mozilla.org/MPL/
//
// Software distributed under the License is distributed on an "AS IS" basis,
// WITHOUT WARRANTY OF ANY KIND, either express or implied.
// See the License for the specific language governing rights and limitations under the License.
//
// The Original Code is: all this file.
//
// The Initial Developer of the Original Code is Michael Kay
//
// Portions created by (your name) are Copyright (C) (your legal entity). All Rights Reserved.
//
// Contributor(s): none.
//