net.sf.saxon.om.StrippedNode Maven / Gradle / Ivy
package net.sf.saxon.om;
import net.sf.saxon.Configuration;
import net.sf.saxon.value.Whitespace;
import net.sf.saxon.value.Value;
import net.sf.saxon.event.Receiver;
import net.sf.saxon.event.Stripper;
import net.sf.saxon.pattern.NodeKindTest;
import net.sf.saxon.pattern.NodeTest;
import net.sf.saxon.trans.XPathException;
import net.sf.saxon.type.Type;
/**
* A StrippedNode is a view of a node, in a virtual tree that has whitespace
* text nodes stripped from it. All operations on the node produce the same result
* as operations on the real underlying node, except that iterations over the axes
* take care to skip whitespace-only text nodes that are supposed to be stripped.
* Note that this class is only used in cases where a pre-built tree is supplied as
* the input to a transformation, and where the stylesheet does whitespace stripping;
* if a SAXSource or StreamSource is supplied, whitespace is stripped as the tree
* is built.
*/
public class StrippedNode implements NodeInfo, VirtualNode {
protected NodeInfo node;
protected StrippedNode parent; // null means unknown
protected StrippedDocument docWrapper;
protected StrippedNode() {}
/**
* This constructor is protected: nodes should be created using the makeWrapper
* factory method
* @param node The node to be wrapped
* @param parent The StrippedNode that wraps the parent of this node
*/
protected StrippedNode(NodeInfo node, StrippedNode parent) {
this.node = node;
this.parent = parent;
}
/**
* Factory method to wrap a node with a wrapper that implements the Saxon
* NodeInfo interface.
* @param node The underlying node
* @param docWrapper The wrapper for the document node (must be supplied)
* @param parent The wrapper for the parent of the node (null if unknown)
* @return The new wrapper for the supplied node
*/
protected StrippedNode makeWrapper(NodeInfo node,
StrippedDocument docWrapper,
StrippedNode parent) {
StrippedNode wrapper = new StrippedNode(node, parent);
wrapper.docWrapper = docWrapper;
return wrapper;
}
/**
* Get the underlying DOM node, to implement the VirtualNode interface
*/
public Object getUnderlyingNode() {
return node;
}
/**
* Get the configuration
*/
public Configuration getConfiguration() {
return node.getConfiguration();
}
/**
* Get the name pool for this node
* @return the NamePool
*/
public NamePool getNamePool() {
return node.getNamePool();
}
/**
* Return the type of node.
* @return one of the values Node.ELEMENT, Node.TEXT, Node.ATTRIBUTE, etc.
*/
public int getNodeKind() {
return node.getNodeKind();
}
/**
* Get the typed value of the item
*/
public SequenceIterator getTypedValue() throws XPathException {
return node.getTypedValue();
}
/**
* Get the typed value. The result of this method will always be consistent with the method
* {@link Item#getTypedValue()}. However, this method is often more convenient and may be
* more efficient, especially in the common case where the value is expected to be a singleton.
*
* @return the typed value. If requireSingleton is set to true, the result will always be an
* AtomicValue. In other cases it may be a Value representing a sequence whose items are atomic
* values.
* @since 8.5
*/
public Value atomize() throws XPathException {
return node.atomize();
}
/**
* Get the type annotation
* @return 0 (there is no type annotation)
*/
public int getTypeAnnotation() {
return node.getTypeAnnotation();
}
/**
* Determine whether this is the same node as another node.
* Note: a.isSameNode(b) if and only if generateId(a)==generateId(b)
* @return true if this Node object and the supplied Node object represent the
* same node in the tree.
*/
public boolean isSameNodeInfo(NodeInfo other) {
if (other instanceof StrippedNode) {
return node.isSameNodeInfo(((StrippedNode)other).node);
} else {
return node.isSameNodeInfo(other);
}
}
/**
* The equals() method compares nodes for identity. It is defined to give the same result
* as isSameNodeInfo().
* @param other the node to be compared with this node
* @return true if this NodeInfo object and the supplied NodeInfo object represent
* the same node in the tree.
* @since 8.7 Previously, the effect of the equals() method was not defined. Callers
* should therefore be aware that third party implementations of the NodeInfo interface may
* not implement the correct semantics. It is safer to use isSameNodeInfo() for this reason.
* The equals() method has been defined because it is useful in contexts such as a Java Set or HashMap.
*/
public boolean equals(Object other) {
if (other instanceof NodeInfo) {
return isSameNodeInfo((NodeInfo)other);
} else {
return false;
}
}
/**
* The hashCode() method obeys the contract for hashCode(): that is, if two objects are equal
* (represent the same node) then they must have the same hashCode()
* @since 8.7 Previously, the effect of the equals() and hashCode() methods was not defined. Callers
* should therefore be aware that third party implementations of the NodeInfo interface may
* not implement the correct semantics.
*/
public int hashCode() {
return node.hashCode() ^ 0x3c3c3c3c;
}
/**
* Get the System ID for the node.
* @return the System Identifier of the entity in the source document containing the node,
* or null if not known. Note this is not the same as the base URI: the base URI can be
* modified by xml:base, but the system ID cannot.
*/
public String getSystemId() {
return node.getSystemId();
}
public void setSystemId(String uri) {
node.setSystemId(uri);
}
/**
* Get the Base URI for the node, that is, the URI used for resolving a relative URI contained
* in the node. In the JDOM model, base URIs are held only an the document level. We don't
* currently take any account of xml:base attributes.
*/
public String getBaseURI() {
return node.getBaseURI();
}
/**
* Get line number
* @return the line number of the node in its original source document; or -1 if not available
*/
public int getLineNumber() {
return node.getLineNumber();
}
/**
* Determine the relative position of this node and another node, in document order.
* The other node will always be in the same document.
* @param other The other node, whose position is to be compared with this node
* @return -1 if this node precedes the other node, +1 if it follows the other
* node, or 0 if they are the same node. (In this case, isSameNode() will always
* return true, and the two nodes will produce the same result for generateId())
*/
public int compareOrder(NodeInfo other) {
if (other instanceof StrippedNode) {
return node.compareOrder(((StrippedNode)other).node);
} else {
return node.compareOrder(other);
}
}
/**
* Return the string value of the node. The interpretation of this depends on the type
* of node. For an element it is the accumulated character content of the element,
* including descendant elements.
* @return the string value of the node
*/
public String getStringValue() {
return getStringValueCS().toString();
}
/**
* Get the value of the item as a CharSequence. This is in some cases more efficient than
* the version of the method that returns a String.
*/
public CharSequence getStringValueCS() {
// Might not be the same as the string value of the underlying node because of space stripping
switch (getNodeKind()) {
case Type.DOCUMENT:
case Type.ELEMENT:
AxisIterator iter = iterateAxis(Axis.DESCENDANT, NodeKindTest.makeNodeKindTest(Type.TEXT));
FastStringBuffer sb = new FastStringBuffer(1024);
while(true) {
NodeInfo it = (NodeInfo)iter.next();
if (it == null) {
break;
}
sb.append(it.getStringValueCS());
}
return sb.condense();
default:
return node.getStringValueCS();
}
}
/**
* Get name code. The name code is a coded form of the node name: two nodes
* with the same name code have the same namespace URI, the same local name,
* and the same prefix. By masking the name code with &0xfffff, you get a
* fingerprint: two nodes with the same fingerprint have the same local name
* and namespace URI.
* @see NamePool#allocate allocate
*/
public int getNameCode() {
return node.getNameCode();
}
/**
* Get fingerprint. The fingerprint is a coded form of the expanded name
* of the node: two nodes
* with the same name code have the same namespace URI and the same local name.
* A fingerprint of -1 should be returned for a node with no name.
*/
public int getFingerprint() {
return node.getFingerprint();
}
/**
* Get the local part of the name of this node. This is the name after the ":" if any.
* @return the local part of the name. For an unnamed node, returns null, except for
* un unnamed namespace node, which returns "".
*/
public String getLocalPart() {
return node.getLocalPart();
}
/**
* Get the URI part of the name of this node. This is the URI corresponding to the
* prefix, or the URI of the default namespace if appropriate.
* @return The URI of the namespace of this node. For an unnamed node, return null.
* For a node with an empty prefix, return an empty string.
*/
public String getURI() {
return node.getURI();
}
/**
* Get the prefix of the name of the node. This is defined only for elements and attributes.
* If the node has no prefix, or for other kinds of node, return a zero-length string.
*
* @return The prefix of the name of the node.
*/
public String getPrefix() {
return node.getPrefix();
}
/**
* Get the display name of this node. For elements and attributes this is [prefix:]localname.
* For unnamed nodes, it is an empty string.
* @return The display name of this node.
* For a node with no name, return an empty string.
*/
public String getDisplayName() {
return node.getDisplayName();
}
/**
* Get the NodeInfo object representing the parent of this node
*/
public NodeInfo getParent() {
if (parent==null) {
NodeInfo realParent = node.getParent();
if (realParent != null) {
parent = makeWrapper(realParent, docWrapper, null);
}
}
return parent;
}
/**
* Return an iteration over the nodes reached by the given axis from this node
* @param axisNumber the axis to be used
* @return a SequenceIterator that scans the nodes reached by the axis in turn.
*/
public AxisIterator iterateAxis(byte axisNumber) {
switch (axisNumber) {
case Axis.ATTRIBUTE:
case Axis.NAMESPACE:
return new WrappingIterator(node.iterateAxis(axisNumber), this);
case Axis.CHILD:
return new StrippingIterator(node.iterateAxis(axisNumber), this);
case Axis.FOLLOWING_SIBLING:
case Axis.PRECEDING_SIBLING:
StrippedNode parent = (StrippedNode)getParent();
if (parent == null) {
return EmptyIterator.getInstance();
} else {
return new StrippingIterator(node.iterateAxis(axisNumber), parent);
}
default:
return new StrippingIterator(node.iterateAxis(axisNumber), null);
}
}
/**
* Return an iteration over the nodes reached by the given axis from this node
* @param axisNumber the axis to be used
* @param nodeTest A pattern to be matched by the returned nodes
* @return a SequenceIterator that scans the nodes reached by the axis in turn.
*/
public AxisIterator iterateAxis(byte axisNumber, NodeTest nodeTest) {
return new Navigator.AxisFilter(iterateAxis(axisNumber), nodeTest);
}
/**
* Get the value of a given attribute of this node
* @param fingerprint The fingerprint of the attribute name
* @return the attribute value if it exists or null if not
*/
public String getAttributeValue(int fingerprint) {
return node.getAttributeValue(fingerprint);
}
/**
* Get the root node - always a document node with this tree implementation
* @return the NodeInfo representing the containing document
*/
public NodeInfo getRoot() {
return docWrapper;
}
/**
* Get the root (document) node
* @return the DocumentInfo representing the containing document
*/
public DocumentInfo getDocumentRoot() {
return docWrapper;
}
/**
* Determine whether the node has any children.
* Note: the result is equivalent to
* getEnumeration(Axis.CHILD, AnyNodeTest.getInstance()).hasNext()
*/
public boolean hasChildNodes() {
return node.hasChildNodes();
}
/**
* Get a character string that uniquely identifies this node.
* Note: a.isSameNode(b) if and only if generateId(a)==generateId(b)
* @param buffer a buffer, into which will be placed
* a string that uniquely identifies this node, within this
* document. The calling code prepends information to make the result
* unique across all documents.
*/
public void generateId(FastStringBuffer buffer) {
node.generateId(buffer);
}
/**
* Get the document number of the document containing this node. For a free-standing
* orphan node, just return the hashcode.
*/
public int getDocumentNumber() {
return docWrapper.getDocumentNumber();
}
/**
* Copy this node to a given outputter (deep copy)
*/
public void copy(Receiver out, int whichNamespaces, boolean copyAnnotations, int locationId) throws XPathException {
// The underlying code does not do whitespace stripping. So we need to interpose
// a stripper.
Stripper stripper = docWrapper.getStripper().getAnother();
stripper.setUnderlyingReceiver(out);
node.copy(stripper, whichNamespaces, copyAnnotations, locationId);
}
/**
* Get all namespace undeclarations and undeclarations defined on this element.
*
* @param buffer If this is non-null, and the result array fits in this buffer, then the result
* may overwrite the contents of this array, to avoid the cost of allocating a new array on the heap.
* @return An array of integers representing the namespace declarations and undeclarations present on
* this element. For a node other than an element, return null. Otherwise, the returned array is a
* sequence of namespace codes, whose meaning may be interpreted by reference to the name pool. The
* top half word of each namespace code represents the prefix, the bottom half represents the URI.
* If the bottom half is zero, then this is a namespace undeclaration rather than a declaration.
* The XML namespace is never included in the list. If the supplied array is larger than required,
* then the first unused entry will be set to -1.
*
* For a node other than an element, the method returns null.
*/
public int[] getDeclaredNamespaces(int[] buffer) {
return node.getDeclaredNamespaces(buffer);
}
/**
* A WrappingIterator delivers wrappers for the nodes delivered
* by its underlying iterator. It is used when no whitespace stripping
* is actually needed, e.g. for the attribute axis. But we still need to
* create wrappers, so that further iteration remains in the virtual layer
* rather than switching to the real nodes.
*/
private final class WrappingIterator implements AxisIterator {
AxisIterator base;
StrippedNode parent;
NodeInfo current;
boolean atomizing = false;
/**
* Create a WrappingIterator
* @param base The underlying iterator
* @param parent If all the nodes to be wrapped have the same parent,
* it can be specified here. Otherwise specify null.
*/
public WrappingIterator(AxisIterator base, StrippedNode parent) {
this.base = base;
this.parent = parent;
}
/**
* Move to the next node, without returning it. Returns true if there is
* a next node, false if the end of the sequence has been reached. After
* calling this method, the current node may be retrieved using the
* current() function.
*/
public boolean moveNext() {
return (next() != null);
}
public Item next() {
Item n = base.next();
if (n instanceof NodeInfo && !atomizing) {
current = makeWrapper((NodeInfo)n, docWrapper, parent);
} else {
current = (NodeInfo)n;
}
return current;
}
public Item current() {
return current;
}
public int position() {
return base.position();
}
/**
* Return an iterator over an axis, starting at the current node.
*
* @param axis the axis to iterate over, using a constant such as
* {@link Axis#CHILD}
* @param test a predicate to apply to the nodes before returning them.
* @throws NullPointerException if there is no current node
*/
public AxisIterator iterateAxis(byte axis, NodeTest test) {
return current.iterateAxis(axis, test);
}
/**
* Return the atomized value of the current node.
*
* @return the atomized value.
* @throws NullPointerException if there is no current node
*/
public Value atomize() throws XPathException {
return current.atomize();
}
/**
* Return the string value of the current node.
*
* @return the string value, as an instance of CharSequence.
* @throws NullPointerException if there is no current node
*/
public CharSequence getStringValue() {
return current.getStringValueCS();
}
public SequenceIterator getAnother() {
return new WrappingIterator((AxisIterator)base.getAnother(), parent);
}
/**
* Get properties of this iterator, as a bit-significant integer.
*
* @return the properties of this iterator. This will be some combination of
* properties such as {@link GROUNDED}, {@link LAST_POSITION_FINDER},
* and {@link LOOKAHEAD}. It is always
* acceptable to return the value zero, indicating that there are no known special properties.
* It is acceptable for the properties of the iterator to change depending on its state.
*/
public int getProperties() {
return 0;
}
/**
* Indicate that any nodes returned in the sequence will be atomized. This
* means that if it wishes to do so, the implementation can return the typed
* values of the nodes rather than the nodes themselves. The implementation
* is free to ignore this hint.
* @param atomizing true if the caller of this iterator will atomize any
* nodes that are returned, and is therefore willing to accept the typed
* value of the nodes instead of the nodes themselves.
*/
// public void setIsAtomizing(boolean atomizing) {
// this.atomizing = true;
// if (base instanceof AtomizableIterator) {
// ((AtomizableIterator)base).setIsAtomizing(atomizing);
// }
// }
} // end of class WrappingIterator
/**
* A StrippingIterator delivers wrappers for the nodes delivered
* by its underlying iterator. It is used when whitespace stripping
* may be needed, e.g. for the child axis. It examines all text nodes
* encountered to see if they need to be stripped, and if so, it
* skips them.
*/
private final class StrippingIterator implements AxisIterator {
AxisIterator base;
StrippedNode parent;
NodeInfo currentVirtualNode;
int position;
/**
* Create a StrippingIterator
* @param base The underlying iterator
* @param parent If all the nodes to be wrapped have the same parent,
* it can be specified here. Otherwise specify null.
*/
public StrippingIterator(AxisIterator base, StrippedNode parent) {
this.base = base;
this.parent = parent;
position = 0;
}
/**
* Move to the next node, without returning it. Returns true if there is
* a next node, false if the end of the sequence has been reached. After
* calling this method, the current node may be retrieved using the
* current() function.
*/
public boolean moveNext() {
return (next() != null);
}
public Item next() {
NodeInfo nextRealNode;
while (true) {
nextRealNode = (NodeInfo)base.next();
if (nextRealNode==null) {
return null;
}
if (isPreserved(nextRealNode)) {
break;
}
// otherwise skip this whitespace text node
}
currentVirtualNode = makeWrapper(nextRealNode, docWrapper, parent);
position++;
return currentVirtualNode;
}
private boolean isPreserved(NodeInfo nextRealNode) {
if (nextRealNode.getNodeKind() != Type.TEXT) {
return true;
}
if (!Whitespace.isWhite(nextRealNode.getStringValueCS())) {
return true;
}
NodeInfo actualParent =
(parent==null ? nextRealNode.getParent() : parent.node);
if (docWrapper.containsPreserveSpace()) {
NodeInfo p = actualParent;
// the document contains one or more xml:space="preserve" attributes, so we need to see
// if one of them is on an ancestor of this node
while (p.getNodeKind() == Type.ELEMENT) {
String val = p.getAttributeValue(StandardNames.XML_SPACE);
if (val != null) {
if ("preserve".equals(val)) {
return true;
} else if ("default".equals(val)) {
break;
}
}
p = p.getParent();
}
}
try {
if (docWrapper.getStripper().isSpacePreserving(actualParent) == Stripper.ALWAYS_PRESERVE) {
return true;
}
} catch (XPathException e) {
return true;
}
return false;
}
public Item current() {
return currentVirtualNode;
}
public int position() {
return position;
}
/**
* Return an iterator over an axis, starting at the current node.
*
* @param axis the axis to iterate over, using a constant such as
* {@link Axis#CHILD}
* @param test a predicate to apply to the nodes before returning them.
* @throws NullPointerException if there is no current node
*/
public AxisIterator iterateAxis(byte axis, NodeTest test) {
return currentVirtualNode.iterateAxis(axis, test);
}
/**
* Return the atomized value of the current node.
*
* @return the atomized value.
* @throws NullPointerException if there is no current node
*/
public Value atomize() throws XPathException {
return currentVirtualNode.atomize();
}
/**
* Return the string value of the current node.
*
* @return the string value, as an instance of CharSequence.
* @throws NullPointerException if there is no current node
*/
public CharSequence getStringValue() {
return currentVirtualNode.getStringValue();
}
public SequenceIterator getAnother() {
return new StrippingIterator((AxisIterator)base.getAnother(), parent);
}
/**
* Get properties of this iterator, as a bit-significant integer.
*
* @return the properties of this iterator. This will be some combination of
* properties such as {@link GROUNDED}, {@link LAST_POSITION_FINDER},
* and {@link LOOKAHEAD}. It is always
* acceptable to return the value zero, indicating that there are no known special properties.
* It is acceptable for the properties of the iterator to change depending on its state.
*/
public int getProperties() {
return 0;
}
} // end of class StrippingIterator
}
//
// The contents of this file are subject to the Mozilla Public License Version 1.0 (the "License");
// you may not use this file except in compliance with the License. You may obtain a copy of the
// License at http://www.mozilla.org/MPL/
//
// Software distributed under the License is distributed on an "AS IS" basis,
// WITHOUT WARRANTY OF ANY KIND, either express or implied.
// See the License for the specific language governing rights and limitations under the License.
//
// The Original Code is: all this file.
//
// The Initial Developer of the Original Code is
// Michael H. Kay.
//
// Portions created by (your name) are Copyright (C) (your legal entity). All Rights Reserved.
//
// Contributor(s): none.
//
© 2015 - 2025 Weber Informatics LLC | Privacy Policy