net.sf.saxon.tinytree.TinyNodeImpl Maven / Gradle / Ivy
Show all versions of saxon9 Show documentation
package net.sf.saxon.tinytree;
import net.sf.saxon.Configuration;
import net.sf.saxon.Err;
import net.sf.saxon.om.*;
import net.sf.saxon.pattern.AnyNodeTest;
import net.sf.saxon.pattern.NameTest;
import net.sf.saxon.pattern.NodeTest;
import net.sf.saxon.trans.XPathException;
import net.sf.saxon.type.SchemaType;
import net.sf.saxon.type.Type;
import net.sf.saxon.value.UntypedAtomicValue;
import net.sf.saxon.value.Value;
import javax.xml.transform.SourceLocator;
/**
* A node in a TinyTree representing an XML element, character content, or attribute.
* This is the top-level class in the implementation class hierarchy; it essentially contains
* all those methods that can be defined using other primitive methods, without direct access
* to data.
*
* @author Michael H. Kay
*/
public abstract class TinyNodeImpl implements NodeInfo, ExtendedNodeInfo, FingerprintedNode, SourceLocator {
protected TinyTree tree;
protected int nodeNr;
protected TinyNodeImpl parent = null;
/**
* Chararacteristic letters to identify each type of node, indexed using the node type
* values. These are used as the initial letter of the result of generate-id()
*/
public static final char[] NODE_LETTER =
{'x', 'e', 'a', 't', 'x', 'x', 'x', 'p', 'c', 'r', 'x', 'x', 'x', 'n'};
/**
* Get the value of the item as a CharSequence. This is in some cases more efficient than
* the version of the method that returns a String.
*/
public CharSequence getStringValueCS() {
return getStringValue();
}
/**
* Get the type annotation of this node, if any
*/
public int getTypeAnnotation() {
return -1;
}
/**
* Get the column number of the node.
* The default implementation returns -1, meaning unknown
*/
public int getColumnNumber() {
return -1;
}
/**
* Get the public identifier of the document entity containing this node.
* The default implementation returns null, meaning unknown
*/
public String getPublicId() {
return null;
}
/**
* Get the typed value of this node.
* If there is no type annotation, we return the string value, as an instance
* of xs:untypedAtomic
*/
public SequenceIterator getTypedValue() throws XPathException {
int annotation = getTypeAnnotation();
if ((annotation & NodeInfo.IS_DTD_TYPE) != 0) {
annotation = StandardNames.XS_UNTYPED_ATOMIC;
}
annotation &= NamePool.FP_MASK;
if (annotation == -1 || annotation == StandardNames.XS_UNTYPED_ATOMIC || annotation == StandardNames.XS_UNTYPED) {
return SingletonIterator.makeIterator(new UntypedAtomicValue(getStringValueCS()));
} else {
SchemaType stype = getConfiguration().getSchemaType(annotation);
if (stype == null) {
String typeName;
try {
typeName = getNamePool().getDisplayName(annotation);
} catch (Exception err) {
typeName = annotation + "";
}
throw new XPathException("Unknown type annotation " +
Err.wrap(typeName) + " in document instance");
} else {
return stype.getTypedValue(this);
}
}
}
/**
* Get the typed value. The result of this method will always be consistent with the method
* {@link net.sf.saxon.om.Item#getTypedValue()}. However, this method is often more convenient and may be
* more efficient, especially in the common case where the value is expected to be a singleton.
*
* @return the typed value. If requireSingleton is set to true, the result will always be an
* AtomicValue. In other cases it may be a Value representing a sequence whose items are atomic
* values.
* @since 8.5
*/
public Value atomize() throws XPathException {
int annotation = getTypeAnnotation();
if ((annotation & NodeInfo.IS_DTD_TYPE) != 0) {
annotation = StandardNames.XS_UNTYPED_ATOMIC;
}
if (annotation == -1 || annotation == StandardNames.XS_UNTYPED_ATOMIC || annotation == StandardNames.XS_UNTYPED) {
return new UntypedAtomicValue(getStringValueCS());
} else {
SchemaType stype = getConfiguration().getSchemaType(annotation);
if (stype == null) {
String typeName = getNamePool().getDisplayName(annotation);
throw new XPathException("Unknown type annotation " +
Err.wrap(typeName) + " in document instance");
} else {
return stype.atomize(this);
}
}
}
/**
* Set the system id of this node.
* This method is present to ensure that
* the class implements the javax.xml.transform.Source interface, so a node can
* be used as the source of a transformation.
*/
public void setSystemId(String uri) {
short type = tree.nodeKind[nodeNr];
if (type == Type.ATTRIBUTE || type == Type.NAMESPACE) {
getParent().setSystemId(uri);
} else {
tree.setSystemId(nodeNr, uri);
}
}
/**
* Set the parent of this node. Providing this information is useful,
* if it is known, because otherwise getParent() has to search backwards
* through the document.
* @param parent the parent of this node
*/
protected void setParentNode(TinyNodeImpl parent) {
this.parent = parent;
}
/**
* Determine whether this is the same node as another node
*
* @return true if this Node object and the supplied Node object represent the
* same node in the tree.
*/
public boolean isSameNodeInfo(NodeInfo other) {
return this == other ||
(other instanceof TinyNodeImpl &&
tree == ((TinyNodeImpl)other).tree &&
nodeNr == ((TinyNodeImpl)other).nodeNr &&
getNodeKind() == other.getNodeKind());
}
/**
* The equals() method compares nodes for identity. It is defined to give the same result
* as isSameNodeInfo().
*
* @param other the node to be compared with this node
* @return true if this NodeInfo object and the supplied NodeInfo object represent
* the same node in the tree.
* @since 8.7 Previously, the effect of the equals() method was not defined. Callers
* should therefore be aware that third party implementations of the NodeInfo interface may
* not implement the correct semantics. It is safer to use isSameNodeInfo() for this reason.
* The equals() method has been defined because it is useful in contexts such as a Java Set or HashMap.
*/
public boolean equals(Object other) {
return other instanceof NodeInfo && isSameNodeInfo((NodeInfo)other);
}
/**
* The hashCode() method obeys the contract for hashCode(): that is, if two objects are equal
* (represent the same node) then they must have the same hashCode()
*
* @since 8.7 Previously, the effect of the equals() and hashCode() methods was not defined. Callers
* should therefore be aware that third party implementations of the NodeInfo interface may
* not implement the correct semantics.
*/
public int hashCode() {
return ((tree.getDocumentNumber() & 0x3ff) << 20) ^ nodeNr ^ (getNodeKind() << 14);
}
/**
* Get the system ID for the entity containing the node.
*/
public String getSystemId() {
return tree.getSystemId(nodeNr);
}
/**
* Get the base URI for the node. Default implementation for child nodes gets
* the base URI of the parent node.
*/
public String getBaseURI() {
return (getParent()).getBaseURI();
}
/**
* Get the line number of the node within its source document entity
*/
public int getLineNumber() {
return tree.getLineNumber(nodeNr);
}
/**
* Get the node sequence number (in document order). Sequence numbers are monotonic but not
* consecutive. The sequence number must be unique within the document (not, as in
* previous releases, within the whole document collection).
* For document nodes, elements, text nodes, comment nodes, and PIs, the sequence number
* is a long with the sequential node number in the top half and zero in the bottom half.
* The bottom half is used only for attributes and namespace.
* @return the sequence number
*/
protected long getSequenceNumber() {
return (long)nodeNr << 32;
}
/**
* Determine the relative position of this node and another node, in document order.
* The other node will always be in the same document.
*
* @param other The other node, whose position is to be compared with this node
* @return -1 if this node precedes the other node, +1 if it follows the other
* node, or 0 if they are the same node. (In this case, isSameNode() will always
* return true, and the two nodes will produce the same result for generateId())
*/
public final int compareOrder(NodeInfo other) {
long a = getSequenceNumber();
if (other instanceof TinyNodeImpl) {
long b = ((TinyNodeImpl)other).getSequenceNumber();
if (a < b) {
return -1;
}
if (a > b) {
return +1;
}
return 0;
} else {
// it must be a namespace node
return 0 - other.compareOrder(this);
}
}
/**
* Get the fingerprint of the node, used for matching names
*/
public int getFingerprint() {
int nc = getNameCode();
if (nc == -1) {
return -1;
}
return nc & 0xfffff;
}
/**
* Get the name code of the node, used for matching names
*/
public int getNameCode() {
// overridden for attributes and namespace nodes.
return tree.nameCode[nodeNr];
}
/**
* Get the prefix part of the name of this node. This is the name before the ":" if any.
*
* @return the prefix part of the name. For an unnamed node, return "".
*/
public String getPrefix() {
int code = tree.nameCode[nodeNr];
if (code < 0) {
return "";
}
if (NamePool.getPrefixIndex(code) == 0) {
return "";
}
return tree.getNamePool().getPrefix(code);
}
/**
* Get the URI part of the name of this node. This is the URI corresponding to the
* prefix, or the URI of the default namespace if appropriate.
*
* @return The URI of the namespace of this node. For an unnamed node, or for
* an element or attribute in the default namespace, return an empty string.
*/
public String getURI() {
int code = tree.nameCode[nodeNr];
if (code < 0) {
return "";
}
return tree.getNamePool().getURI(code);
}
/**
* Get the display name of this node (a lexical QName). For elements and attributes this is [prefix:]localname.
* The original prefix is retained. For unnamed nodes, the result is an empty string.
*
* @return The display name of this node.
* For a node with no name, return an empty string.
*/
public String getDisplayName() {
int code = tree.nameCode[nodeNr];
if (code < 0) {
return "";
}
return tree.getNamePool().getDisplayName(code);
}
/**
* Get the local part of the name of this node.
*
* @return The local name of this node.
* For a node with no name, return "".
*/
public String getLocalPart() {
int code = tree.nameCode[nodeNr];
if (code < 0) {
return "";
}
return tree.getNamePool().getLocalName(code);
}
/**
* Return an iterator over all the nodes reached by the given axis from this node
*
* @param axisNumber Identifies the required axis, eg. Axis.CHILD or Axis.PARENT
* @return a AxisIteratorImpl that scans the nodes reached by the axis in turn.
*/
public AxisIterator iterateAxis(byte axisNumber) {
// fast path for child axis
if (axisNumber == Axis.CHILD) {
if (hasChildNodes()) {
return new SiblingEnumeration(tree, this, null, true);
} else {
return EmptyIterator.getInstance();
}
} else {
return iterateAxis(axisNumber, AnyNodeTest.getInstance());
}
}
/**
* Return an iterator over the nodes reached by the given axis from this node
*
* @param axisNumber Identifies the required axis, eg. Axis.CHILD or Axis.PARENT
* @param nodeTest A pattern to be matched by the returned nodes.
* @return a AxisIteratorImpl that scans the nodes reached by the axis in turn.
*/
public AxisIterator iterateAxis(byte axisNumber, NodeTest nodeTest) {
int type = getNodeKind();
switch (axisNumber) {
case Axis.ANCESTOR:
return new AncestorEnumeration(this, nodeTest, false);
case Axis.ANCESTOR_OR_SELF:
return new AncestorEnumeration(this, nodeTest, true);
case Axis.ATTRIBUTE:
if (type != Type.ELEMENT) {
return EmptyIterator.getInstance();
}
if (tree.alpha[nodeNr] < 0) {
return EmptyIterator.getInstance();
}
return new AttributeEnumeration(tree, nodeNr, nodeTest);
case Axis.CHILD:
if (hasChildNodes()) {
return new SiblingEnumeration(tree, this, nodeTest, true);
} else {
return EmptyIterator.getInstance();
}
case Axis.DESCENDANT:
if (type == Type.DOCUMENT &&
nodeTest instanceof NameTest &&
nodeTest.getPrimitiveType() == Type.ELEMENT) {
return ((TinyDocumentImpl)this).getAllElements(nodeTest.getFingerprint());
} else if (hasChildNodes()) {
return new DescendantEnumeration(tree, this, nodeTest, false);
} else {
return EmptyIterator.getInstance();
}
case Axis.DESCENDANT_OR_SELF:
if (hasChildNodes()) {
return new DescendantEnumeration(tree, this, nodeTest, true);
} else {
return Navigator.filteredSingleton(this, nodeTest);
}
case Axis.FOLLOWING:
if (type == Type.ATTRIBUTE || type == Type.NAMESPACE) {
return new FollowingEnumeration(tree, (TinyNodeImpl)getParent(), nodeTest, true);
} else if (tree.depth[nodeNr] == 0) {
return EmptyIterator.getInstance();
} else {
return new FollowingEnumeration(tree, this, nodeTest, false);
}
case Axis.FOLLOWING_SIBLING:
if (type == Type.ATTRIBUTE || type == Type.NAMESPACE || tree.depth[nodeNr] == 0) {
return EmptyIterator.getInstance();
} else {
return new SiblingEnumeration(tree, this, nodeTest, false);
}
case Axis.NAMESPACE:
if (type != Type.ELEMENT) {
return EmptyIterator.getInstance();
}
return NamespaceIterator.makeIterator(this, nodeTest);
case Axis.PARENT:
NodeInfo parent = getParent();
return Navigator.filteredSingleton(parent, nodeTest);
case Axis.PRECEDING:
if (type == Type.ATTRIBUTE || type == Type.NAMESPACE) {
return new PrecedingEnumeration(tree, (TinyNodeImpl)getParent(), nodeTest, false);
} else if (tree.depth[nodeNr] == 0) {
return EmptyIterator.getInstance();
} else {
return new PrecedingEnumeration(tree, this, nodeTest, false);
}
case Axis.PRECEDING_SIBLING:
if (type == Type.ATTRIBUTE || type == Type.NAMESPACE || tree.depth[nodeNr] == 0) {
return EmptyIterator.getInstance();
} else {
return new PrecedingSiblingEnumeration(tree, this, nodeTest);
}
case Axis.SELF:
return Navigator.filteredSingleton(this, nodeTest);
case Axis.PRECEDING_OR_ANCESTOR:
if (type == Type.DOCUMENT) {
return EmptyIterator.getInstance();
} else if (type == Type.ATTRIBUTE || type == Type.NAMESPACE) {
// See test numb32.
TinyNodeImpl el = (TinyNodeImpl)getParent();
return new PrependIterator(el, new PrecedingEnumeration(tree, el, nodeTest, true));
} else {
return new PrecedingEnumeration(tree, this, nodeTest, true);
}
default:
throw new IllegalArgumentException("Unknown axis number " + axisNumber);
}
}
/**
* Find the parent node of this node.
*
* @return The Node object describing the containing element or root node.
*/
public NodeInfo getParent() {
if (parent != null) {
return parent;
}
int p = getParentNodeNr(tree, nodeNr);
if (p == -1) {
parent = null;
} else {
parent = tree.getNode(p);
}
return parent;
}
/**
* Static method to get the parent of a given node, without instantiating the node as an object.
* The starting node is any node other than an attribute or namespace node.
*
* @param tree the tree containing the starting node
* @param nodeNr the node number of the starting node within the tree
* @return the node number of the parent node, or -1 if there is no parent.
*/
static int getParentNodeNr(TinyTree tree, int nodeNr) {
if (tree.depth[nodeNr] == 0) {
return -1;
}
// follow the next-sibling pointers until we reach either a next sibling pointer that
// points backwards, or a parent-pointer pseudo-node
int p = tree.next[nodeNr];
while (p > nodeNr) {
if (tree.nodeKind[p] == Type.PARENT_POINTER) {
return tree.alpha[p];
}
p = tree.next[p];
}
return p;
}
/**
* Determine whether the node has any children.
*
* @return true
if this node has any attributes,
* false
otherwise.
*/
public boolean hasChildNodes() {
// overridden in TinyParentNodeImpl
return false;
}
/**
* Get the value of a given attribute of this node
*
* @param fingerprint The fingerprint of the attribute name
* @return the attribute value if it exists or null if not
*/
public String getAttributeValue(int fingerprint) {
// overridden in TinyElementImpl
return null;
}
/**
* Get the root node of the tree (not necessarily a document node)
*
* @return the NodeInfo representing the root of this tree
*/
public NodeInfo getRoot() {
if (tree.depth[nodeNr] == 0) {
return this;
}
if (parent != null) {
return parent.getRoot();
}
return tree.getNode(tree.getRootNode(nodeNr));
}
/**
* Get the root (document) node
*
* @return the DocumentInfo representing the containing document
*/
public DocumentInfo getDocumentRoot() {
NodeInfo root = getRoot();
if (root.getNodeKind() == Type.DOCUMENT) {
return (DocumentInfo)root;
} else {
return null;
}
}
/**
* Get the configuration
*/
public Configuration getConfiguration() {
return tree.getConfiguration();
}
/**
* Get the NamePool for the tree containing this node
*
* @return the NamePool
*/
public NamePool getNamePool() {
return tree.getNamePool();
}
/**
* Get all namespace undeclarations and undeclarations defined on this element.
*
* @param buffer If this is non-null, and the result array fits in this buffer, then the result
* may overwrite the contents of this array, to avoid the cost of allocating a new array on the heap.
* @return An array of integers representing the namespace declarations and undeclarations present on
* this element. For a node other than an element, return null. Otherwise, the returned array is a
* sequence of namespace codes, whose meaning may be interpreted by reference to the name pool. The
* top half word of each namespace code represents the prefix, the bottom half represents the URI.
* If the bottom half is zero, then this is a namespace undeclaration rather than a declaration.
* The XML namespace is never included in the list. If the supplied array is larger than required,
* then the first unused entry will be set to -1.
*
* For a node other than an element, the method returns null.
*/
public int[] getDeclaredNamespaces(int[] buffer) {
return null;
}
/**
* Get a character string that uniquely identifies this node
*
* @param buffer buffer, which on return will contain
* a character string that uniquely identifies this node.
*
*/
public void generateId(FastStringBuffer buffer) {
buffer.append("d");
buffer.append(Integer.toString(tree.getDocumentNumber()));
buffer.append(NODE_LETTER[getNodeKind()]);
buffer.append(Integer.toString(nodeNr));
}
/**
* Get the document number of the document containing this node
* (Needed when the document isn't a real node, for sorting free-standing elements)
*/
public final int getDocumentNumber() {
return tree.getDocumentNumber();
}
/**
* Test if this node is an ancestor-or-self of another
*
* @param d the putative descendant-or-self node
* @return true if this node is an ancestor-or-self of d
*/
public boolean isAncestorOrSelf(TinyNodeImpl d) {
// If it's a different tree, return false
if (tree != d.tree) return false;
int dn = d.nodeNr;
// If d is an attribute, then either "this" must be the same attribute, or "this" must
// be an ancestor-or-self of the parent of d.
if (d instanceof TinyAttributeImpl) {
if (this instanceof TinyAttributeImpl) {
return nodeNr == dn;
} else {
dn = tree.attParent[dn];
}
}
// If this is an attribute, return false (we've already handled the case where it's the same attribute)
if (this instanceof TinyAttributeImpl) return false;
// From now on, we know that both "this" and "dn" are nodes in the primary array
// If d is later in document order, return false
if (nodeNr > dn) return false;
// If it's the same node, return true
if (nodeNr == dn) return true;
// We've dealt with the "self" case: to be an ancestor, it must be an element or document node
if (!(this instanceof TinyParentNodeImpl)) return false;
// If this node is deeper than the target node then it can't be an ancestor
if (tree.depth[nodeNr] >= tree.depth[dn]) return false;
// The following code will exit as soon as we find an ancestor that has a following-sibling:
// when that happens, we know it's an ancestor iff its following-sibling is beyond the node we're
// looking for. If the ancestor has no following sibling, we go up a level.
// The algorithm depends on the following assertion: if A is before D in document order, then
// either A is an ancestor of D, or some ancestor-or-self of A has a following-sibling that
// is before-or-equal to D in document order.
int n = nodeNr;
while (true) {
int nextSib = tree.next[n];
if (nextSib > dn) {
return true;
} else if (tree.depth[nextSib] == 0) {
return true;
} else if (nextSib < n) {
n = nextSib;
// continue
} else {
return false;
}
}
}
/**
* Determine whether this node has the is-id property
* @return true if the node is an ID
*/
public boolean isId() {
return false; // overridden for element and attribute nodes
}
/**
* Determine whether this node has the is-idref property
* @return true if the node is an IDREF or IDREFS element or attribute
*/
public boolean isIdref() {
return false; // overridden for element and attribute nodes
}
/**
* Determine whether the node has the is-nilled property
* @return true if the node has the is-nilled property
*/
public boolean isNilled() {
return tree.isNilled(nodeNr);
}
/**
* Get the node number of this node within the TinyTree. This method is intended for internal use.
* @return the internal node number
*/
public int getNodeNumber() {
return nodeNr;
}
}
//
// The contents of this file are subject to the Mozilla Public License Version 1.0 (the "License");
// you may not use this file except in compliance with the License. You may obtain a copy of the
// License at http://www.mozilla.org/MPL/
//
// Software distributed under the License is distributed on an "AS IS" basis,
// WITHOUT WARRANTY OF ANY KIND, either express or implied.
// See the License for the specific language governing rights and limitations under the License.
//
// The Original Code is: all this file.
//
// The Initial Developer of the Original Code is Michael H. Kay.
//
// Portions created by (your name) are Copyright (C) (your legal entity). All Rights Reserved.
//
// Contributor(s): none.
//