All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.openimaj.audio.analysis.FourierTransform Maven / Gradle / Ivy

Go to download

Implementations of various audio processors (e.g. multichannel conversion, volume change, ...).

There is a newer version: 1.3.10
Show newest version
/**
 * Copyright (c) 2011, The University of Southampton and the individual contributors.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 *   * 	Redistributions of source code must retain the above copyright notice,
 * 	this list of conditions and the following disclaimer.
 *
 *   *	Redistributions in binary form must reproduce the above copyright notice,
 * 	this list of conditions and the following disclaimer in the documentation
 * 	and/or other materials provided with the distribution.
 *
 *   *	Neither the name of the University of Southampton nor the names of its
 * 	contributors may be used to endorse or promote products derived from this
 * 	software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
/**
 *
 */
package org.openimaj.audio.analysis;

import org.openimaj.audio.AudioFormat;
import org.openimaj.audio.AudioStream;
import org.openimaj.audio.SampleChunk;
import org.openimaj.audio.processor.AudioProcessor;
import org.openimaj.audio.samples.SampleBuffer;
import org.openimaj.audio.samples.SampleBufferFactory;

import edu.emory.mathcs.jtransforms.fft.FloatFFT_1D;

/**
 * 	Perform an FFT on an audio signal. An FFT will be calculated for every
 * 	channel in the audio separately. Use {@link #getLastFFT()} to get the
 * 	last generated frequency domain calculation.
 * 	

* The class also includes an inverse transform function that takes a * frequency domain array (such as that delivered by {@link #getLastFFT()}) * and returns a {@link SampleChunk}. The format of the output sample chunk * is determined by the given audio format. * * @author David Dupplaw ([email protected]) * @created 28 Oct 2011 */ public class FourierTransform extends AudioProcessor { /** The last generated FFT */ private float[][] lastFFT = null; /** The scaling factor to apply prior to the FFT */ private float scalingFactor = 1; /** Whether to pad the input to the next power of 2 */ private boolean padToNextPowerOf2 = true; /** Whether to divide the real return parts by the size of the input */ private final boolean normalise = true; /** * Default constructor for ad-hoc processing. */ public FourierTransform() { } /** * Constructor for chaining. * @param as The stream to chain to */ public FourierTransform( final AudioStream as ) { super( as ); } /** * {@inheritDoc} * @see org.openimaj.audio.processor.AudioProcessor#process(org.openimaj.audio.SampleChunk) */ @Override public SampleChunk process( final SampleChunk sample ) { // Get a sample buffer object for this data final SampleBuffer sb = sample.getSampleBuffer(); return this.process( sb ).getSampleChunk(); } /** * Process the given sample buffer * @param sb The sample buffer * @return The sample buffer */ public SampleBuffer process( final SampleBuffer sb ) { // The number of channels we need to process final int nChannels = sb.getFormat().getNumChannels(); // Number of samples we'll need to process for each channel final int nSamplesPerChannel = sb.size() / nChannels; // The size of the FFT to generate final int sizeOfFFT = this.padToNextPowerOf2 ? this.nextPowerOf2( nSamplesPerChannel ) : nSamplesPerChannel; // The Fourier transformer we're going to use final FloatFFT_1D fft = new FloatFFT_1D( nSamplesPerChannel ); // Creates an FFT for each of the channels in turn this.lastFFT = new float[nChannels][]; for( int c = 0; c < nChannels; c++ ) { // Twice the length to account for imaginary parts this.lastFFT[c] = new float[ sizeOfFFT*2 ]; // Fill the array for( int x = 0; x < nSamplesPerChannel; x++ ) this.lastFFT[c][x*2] = sb.get( x*nChannels+c ) * this.scalingFactor; // System.out.println( "FFT Input (channel "+c+"), length "+this.lastFFT[c].length+": " ); // System.out.println( Arrays.toString( this.lastFFT[c] )); // Perform the FFT (using jTransforms) fft.complexForward( this.lastFFT[c] ); if( this.normalise ) this.normaliseReals( sizeOfFFT ); // System.out.println( "FFT Output (channel "+c+"): " ); // System.out.println( Arrays.toString( this.lastFFT[c] )); } return sb; } /** * Divides the real parts of the last FFT by the given size * @param size the divisor */ private void normaliseReals( final int size ) { for( int c = 0; c < this.lastFFT.length; c++ ) for( int i = 0; i < this.lastFFT[c].length; i +=2 ) this.lastFFT[c][i] /= size; } /** * Returns the next power of 2 superior to n. * @param n The value to find the next power of 2 above * @return The next power of 2 */ private int nextPowerOf2( final int n ) { return (int)Math.pow( 2, 32 - Integer.numberOfLeadingZeros(n - 1) ); } /** * Given some transformed audio data, will convert it back into * a sample chunk. The number of channels given audio format * must match the data that is provided in the transformedData array. * * @param format The required format for the output * @param transformedData The frequency domain data * @return A {@link SampleChunk} */ static public SampleChunk inverseTransform( final AudioFormat format, final float[][] transformedData ) { // Check the data has something in it. if( transformedData == null || transformedData.length == 0 ) throw new IllegalArgumentException( "No data in data chunk" ); // Check that the transformed data has the same number of channels // as the data we've been given. if( transformedData.length != format.getNumChannels() ) throw new IllegalArgumentException( "Number of channels in audio " + "format does not match given data." ); // The number of channels final int nChannels = transformedData.length; // The Fourier transformer we're going to use final FloatFFT_1D fft = new FloatFFT_1D( transformedData[0].length/2 ); // Create a sample buffer to put the time domain data into final SampleBuffer sb = SampleBufferFactory.createSampleBuffer( format, transformedData[0].length/2 * nChannels ); // Perform the inverse on each channel for( int channel = 0; channel < transformedData.length; channel++ ) { // Convert frequency domain back to time domain fft.complexInverse( transformedData[channel], true ); // Set the data in the buffer for( int x = 0; x < transformedData[channel].length/2; x++ ) sb.set( x*nChannels+channel, transformedData[channel][x] ); } // Return a new sample chunk return sb.getSampleChunk(); } /** * Get the last processed FFT frequency data. * @return The fft of the last processed window */ public float[][] getLastFFT() { return this.lastFFT; } /** * Returns the magnitudes of the last FFT data. The length of the * returned array of magnitudes will be half the length of the FFT data * (up to the Nyquist frequency). * * @return The magnitudes of the last FFT data. */ public float[][] getMagnitudes() { final float[][] mags = new float[this.lastFFT.length][]; for( int c = 0; c < this.lastFFT.length; c++ ) { mags[c] = new float[ this.lastFFT[c].length/4 ]; for( int i = 0; i < this.lastFFT[c].length/4; i++ ) { final float re = this.lastFFT[c][i*2]; final float im = this.lastFFT[c][i*2+1]; mags[c][i] = (float)Math.sqrt( re*re + im*im ); } } return mags; } /** * Returns the power magnitudes of the last FFT data. The length of the * returned array of magnitudes will be half the length of the FFT data * (up to the Nyquist frequency). The power is calculated using: *

10log10( real^2 + imaginary^2 )

* * @return The magnitudes of the last FFT data. */ public float[][] getPowerMagnitudes() { final float[][] mags = new float[this.lastFFT.length][]; for( int c = 0; c < this.lastFFT.length; c++ ) { mags[c] = new float[ this.lastFFT[c].length/4 ]; for( int i = 0; i < this.lastFFT[c].length/4; i++ ) { final float re = this.lastFFT[c][i*2]; final float im = this.lastFFT[c][i*2+1]; mags[c][i] = 10f * (float)Math.log10( re*re + im*im ); } } return mags; } /** * Scales the real and imaginary parts by the scalar prior to * calculating the (square) magnitude for normalising the outputs. * Returns only those values up to the Nyquist frequency. * * @param scalar The scalar * @return Normalised magnitudes. */ public float[][] getNormalisedMagnitudes( final float scalar ) { final float[][] mags = new float[this.lastFFT.length][]; for( int c = 0; c < this.lastFFT.length; c++ ) { mags[c] = new float[ this.lastFFT[c].length/4 ]; for( int i = 0; i < this.lastFFT[c].length/4; i++ ) { final float re = this.lastFFT[c][i*2] * scalar; final float im = this.lastFFT[c][i*2+1] * scalar; mags[c][i] = re*re + im*im; } } return mags; } /** * Returns just the real numbers from the last FFT. The result will include * the symmetrical part. * @return The real numbers */ public float[][] getReals() { final float[][] reals = new float[this.lastFFT.length][]; for( int c = 0; c < this.lastFFT.length; c++ ) { reals[c] = new float[ this.lastFFT[c].length/2 ]; for( int i = 0; i < this.lastFFT[c].length/2; i++ ) reals[c][i] = this.lastFFT[c][i*2]; } return reals; } /** * Get the scaling factor in use. * @return The scaling factor. */ public float getScalingFactor() { return this.scalingFactor; } /** * Set the scaling factor to use. This factor will be applied to signal * data prior to performing the FFT. The default is, of course, 1. * @param scalingFactor The scaling factor to use. */ public void setScalingFactor( final float scalingFactor ) { this.scalingFactor = scalingFactor; } /** * Returns whether the input will be padded to be the length * of the next higher power of 2. * @return TRUE if the input will be padded, FALSE otherwise. */ public boolean isPadToNextPowerOf2() { return this.padToNextPowerOf2; } /** * Set whether to pad the input to the next power of 2. * @param padToNextPowerOf2 TRUE to pad the input, FALSE otherwise */ public void setPadToNextPowerOf2( final boolean padToNextPowerOf2 ) { this.padToNextPowerOf2 = padToNextPowerOf2; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy