All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.openimaj.image.camera.calibration.CameraCalibration Maven / Gradle / Ivy

The newest version!
/**
 * Copyright (c) 2011, The University of Southampton and the individual contributors.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 *   * 	Redistributions of source code must retain the above copyright notice,
 * 	this list of conditions and the following disclaimer.
 *
 *   *	Redistributions in binary form must reproduce the above copyright notice,
 * 	this list of conditions and the following disclaimer in the documentation
 * 	and/or other materials provided with the distribution.
 *
 *   *	Neither the name of the University of Southampton nor the names of its
 * 	contributors may be used to endorse or promote products derived from this
 * 	software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
package org.openimaj.image.camera.calibration;

import static java.lang.Math.cos;
import static java.lang.Math.pow;
import static java.lang.Math.sin;
import static java.lang.Math.sqrt;

import java.util.ArrayList;
import java.util.List;

import org.apache.commons.math3.analysis.MultivariateMatrixFunction;
import org.apache.commons.math3.analysis.MultivariateVectorFunction;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresFactory;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresOptimizer.Optimum;
import org.apache.commons.math3.fitting.leastsquares.LevenbergMarquardtOptimizer;
import org.apache.commons.math3.fitting.leastsquares.MultivariateJacobianFunction;
import org.apache.commons.math3.linear.ArrayRealVector;
import org.apache.commons.math3.linear.RealVector;
import org.openimaj.image.camera.Camera;
import org.openimaj.image.camera.CameraIntrinsics;
import org.openimaj.math.geometry.point.Point2d;
import org.openimaj.math.geometry.transforms.HomographyRefinement;
import org.openimaj.math.geometry.transforms.TransformUtilities;
import org.openimaj.util.pair.IndependentPair;

import Jama.Matrix;

public class CameraCalibration extends CameraCalibrationZhang {

	public CameraCalibration(List>> points,
			int width, int height)
	{
		super(points, width, height);
	}

	@Override
	protected void performCalibration(int width, int height) {
		// compute the homographies
		final List homographies = new ArrayList();
		for (int i = 0; i < points.size(); i++) {
			final List> data = points.get(i);
			final Matrix h = HomographyRefinement.SINGLE_IMAGE_TRANSFER.refine(
					TransformUtilities.homographyMatrixNorm(data), data);

			homographies.add(h);
		}

		// intial estimate of intrisics and extrinsics
		estimateIntrisicAndExtrinsics(homographies, width, height);

		// non-linear optimisation using analytic jacobian
		refine();
	}

	/**
	 * This is the implementation of the value function for the optimiser. It
	 * computes the predicted location of an image point by projecting a model
	 * point through the camera homography and then applying the distortion. The
	 * implementation is converted from the C code produced by the following
	 * matlab symbolic code:
	 * 
	 * 
	 * 
	 * syms u0 v0 fx fy sk real
	 * syms tx ty tz wx wy wz real
	 * syms k1 k2 k3 p1 p2 real
	 * syms X Y real
	 * 
	 * % the intrinsic parameter matrix
	 * K=[fx sk u0; 0 fy v0; 0 0 1];
	 * 
	 * % Expression for the rotation matrix based on the Rodrigues formula
	 * theta=sqrt(wx^2+wy^2+wz^2);
	 * omega=[0 -wz wy; wz 0 -wx; -wy wx 0];
	 * R = eye(3) + (sin(theta)/theta)*omega + ((1-cos(theta))/theta^2)*(omega*omega);
	 * 
	 * % Expression for the translation vector
	 * t=[tx;ty;tz];
	 * 
	 * % perspective projection of the model point (X,Y)
	 * uvs=K*[R(:,1) R(:,2) t]*[X; Y; 1];
	 * u=uvs(1)/uvs(3);
	 * v=uvs(2)/uvs(3);
	 * 
	 * % application of 2-term radial distortion
	 * uu0 = u - u0;
	 * vv0 = v - v0;
	 * x =  uu0/fx;
	 * y =  vv0/fy;
	 * r2 = x*x + y*y;
	 * r4 = r2*r2;
	 * r6 = r2*r2*r2;
	 * uv = [u + uu0*(k1*r2 + k2*r4 + k3*r6) + 2*p1*vv0 + p2*(r2 + 2*uu0^2);
	 *       v + vv0*(k1*r2 + k2*r4 + k3*r6) + p1*(r2 + 2*vv0^2) + 2*p2*uu0];
	 * ccode(uv, 'file', 'calibrate-value.c')
	 * 
	 * 
* * @author Jonathon Hare ([email protected]) * */ private class Value implements MultivariateVectorFunction { @Override public double[] value(double[] params) throws IllegalArgumentException { int totalPoints = 0; for (int i = 0; i < points.size(); i++) totalPoints += points.get(i).size(); final double[] result = new double[2 * totalPoints]; for (int i = 0, k = 0; i < points.size(); i++) { for (int j = 0; j < points.get(i).size(); j++, k++) { final double[] tmp = computeValue(i, j, params); result[k * 2 + 0] = tmp[0]; result[k * 2 + 1] = tmp[1]; } } return result; } private double[] computeValue(int img, int point, double[] params) { final double[][] A0 = new double[2][1]; final double X = points.get(img).get(point).firstObject().getX(); final double Y = points.get(img).get(point).firstObject().getY(); final double fx = params[0]; final double fy = params[1]; final double u0 = params[2]; final double v0 = params[3]; final double sk = params[4]; final double k1 = params[5]; final double k2 = params[6]; final double k3 = params[7]; final double p1 = params[8]; final double p2 = params[9]; final double wx = params[img * 6 + 10]; final double wy = params[img * 6 + 11]; final double wz = params[img * 6 + 12]; final double tx = params[img * 6 + 13]; final double ty = params[img * 6 + 14]; final double tz = params[img * 6 + 15]; // begin matlab code final double t2 = wx * wx; final double t3 = wy * wy; final double t4 = wz * wz; final double t5 = t2 + t3 + t4; final double t6 = sqrt(t5); final double t7 = sin(t6); final double t8 = 1.0 / sqrt(t5); final double t9 = cos(t6); final double t10 = t9 - 1.0; final double t11 = 1.0 / t5; final double t12 = t7 * t8 * wy; final double t13 = t10 * t11 * wx * wz; final double t14 = t12 + t13; final double t15 = t7 * t8 * wz; final double t16 = t7 * t8 * wx; final double t18 = t10 * t11 * wy * wz; final double t17 = t16 - t18; final double t19 = Y * t17; final double t38 = X * t14; final double t20 = t19 - t38 + tz; final double t21 = 1.0 / t20; final double t22 = t10 * t11 * wx * wy; final double t23 = t3 + t4; final double t24 = t10 * t11 * t23; final double t25 = t24 + 1.0; final double t26 = fx * t25; final double t27 = t15 + t22; final double t28 = t17 * u0; final double t29 = t2 + t4; final double t30 = t10 * t11 * t29; final double t31 = t30 + 1.0; final double t32 = sk * t31; final double t43 = fx * t27; final double t33 = t28 + t32 - t43; final double t34 = Y * t33; final double t35 = fx * tx; final double t36 = sk * ty; final double t37 = tz * u0; final double t39 = t15 - t22; final double t40 = sk * t39; final double t48 = t14 * u0; final double t41 = t26 + t40 - t48; final double t42 = X * t41; final double t44 = t34 + t35 + t36 + t37 + t42; final double t49 = t21 * t44; final double t45 = -t49 + u0; final double t53 = fy * ty; final double t54 = fy * t39; final double t55 = t14 * v0; final double t56 = t54 - t55; final double t57 = X * t56; final double t58 = tz * v0; final double t59 = t17 * v0; final double t60 = fy * t31; final double t61 = t59 + t60; final double t62 = Y * t61; final double t63 = t53 + t57 + t58 + t62; final double t64 = t21 * t63; final double t46 = -t64 + v0; final double t47 = 1.0 / (fx * fx); final double t50 = t45 * t45; final double t51 = t47 * t50; final double t52 = 1.0 / (fy * fy); final double t65 = t46 * t46; final double t66 = t52 * t65; final double t67 = t51 + t66; final double t68 = t67 * t67; final double t69 = k1 * t67; final double t70 = k2 * t68; final double t71 = k3 * t67 * t68; final double t72 = t69 + t70 + t71; A0[0][0] = -t45 * t72 + t21 * (t34 + t35 + t36 + t37 + X * (t26 - t14 * u0 + sk * (t15 - t10 * t11 * wx * wy))) + p2 * (t50 * 2.0 + t51 + t66) + p1 * t45 * t46 * 2.0; A0[1][0] = t64 - t46 * t72 + p1 * (t51 + t65 * 2.0 + t66) + p2 * t45 * t46 * 2.0; // end matlab code return new double[] { A0[0][0], A0[1][0] }; } } /** * This is the implementation of the Jacobian function for the optimiser; it * is the partial derivative of the value function with respect to the * parameters. The implementation is based on the matlab symbolic code: * *
	 * 
	 * syms u0 v0 fx fy sk real
	 * syms tx ty tz wx wy wz real
	 * syms k1 k2 k3 p1 p2 real
	 * syms X Y real
	 * 
	 * % the intrinsic parameter matrix
	 * K=[fx sk u0; 0 fy v0; 0 0 1];
	 * 
	 * % Expression for the rotation matrix based on the Rodrigues formula
	 * theta=sqrt(wx^2+wy^2+wz^2);
	 * omega=[0 -wz wy; wz 0 -wx; -wy wx 0];
	 * R = eye(3) + (sin(theta)/theta)*omega + ((1-cos(theta))/theta^2)*(omega*omega);
	 * 
	 * % Expression for the translation vector
	 * t=[tx;ty;tz];
	 * 
	 * % perspective projection of the model point (X,Y)
	 * uvs=K*[R(:,1) R(:,2) t]*[X; Y; 1];
	 * u=uvs(1)/uvs(3);
	 * v=uvs(2)/uvs(3);
	 * 
	 * % application of 2-term radial distortion
	 * uu0 = u - u0;
	 * vv0 = v - v0;
	 * x =  uu0/fx;
	 * y =  vv0/fy;
	 * r2 = x*x + y*y;
	 * r4 = r2*r2;
	 * r6 = r2*r2*r2;
	 * uv = [u + uu0*(k1*r2 + k2*r4 + k3*r6) + 2*p1*vv0 + p2*(r2 + 2*uu0^2);
	 *       v + vv0*(k1*r2 + k2*r4 + k3*r6) + p1*(r2 + 2*vv0^2) + 2*p2*uu0];
	 * J=jacobian(uv,[fx,fy,u0,v0,sk,k1,k2,k3,p1,p2 wx wy wz tx ty tz]);  
	 * ccode(J, 'file', 'calibrate-jacobian.c')
	 * 
	 * 
* * @author Jonathon Hare ([email protected]) * */ private class Jacobian implements MultivariateMatrixFunction { @Override public double[][] value(double[] params) { // Note that we're building the jacobian for all cameras/images and // points. The params vector is 10 + 6*numCameras elements long (10 // intrinsic params and 6 extrinsic per camera) int totalPoints = 0; for (int i = 0; i < points.size(); i++) totalPoints += points.get(i).size(); final double[][] result = new double[2 * totalPoints][]; for (int i = 0, k = 0; i < points.size(); i++) { for (int j = 0; j < points.get(i).size(); j++, k++) { final double[][] tmp = computeJacobian(i, j, params); result[k * 2 + 0] = tmp[0]; result[k * 2 + 1] = tmp[1]; } } return result; } private double[][] computeJacobian(int img, int point, double[] params) { final double[][] A0 = new double[2][16]; final double X = points.get(img).get(point).firstObject().getX(); final double Y = points.get(img).get(point).firstObject().getY(); final double fx = params[0]; final double fy = params[1]; final double u0 = params[2]; final double v0 = params[3]; final double sk = params[4]; final double k1 = params[5]; final double k2 = params[6]; final double k3 = params[7]; final double p1 = params[8]; final double p2 = params[9]; final double wx = params[img * 6 + 10]; final double wy = params[img * 6 + 11]; final double wz = params[img * 6 + 12]; final double tx = params[img * 6 + 13]; final double ty = params[img * 6 + 14]; final double tz = params[img * 6 + 15]; // begin matlab code final double t2 = wx * wx; final double t3 = wy * wy; final double t4 = wz * wz; final double t5 = t2 + t3 + t4; final double t6 = sqrt(t5); final double t7 = sin(t6); final double t8 = 1.0 / sqrt(t5); final double t9 = cos(t6); final double t10 = t9 - 1.0; final double t11 = 1.0 / t5; final double t12 = t7 * t8 * wy; final double t13 = t10 * t11 * wx * wz; final double t14 = t12 + t13; final double t15 = t7 * t8 * wz; final double t16 = t7 * t8 * wx; final double t18 = t10 * t11 * wy * wz; final double t17 = t16 - t18; final double t19 = Y * t17; final double t39 = X * t14; final double t20 = t19 - t39 + tz; final double t21 = 1.0 / t20; final double t22 = t10 * t11 * wx * wy; final double t23 = t3 + t4; final double t24 = t10 * t11 * t23; final double t25 = t24 + 1.0; final double t26 = fx * t25; final double t27 = t15 + t22; final double t28 = t17 * u0; final double t29 = t2 + t4; final double t30 = t10 * t11 * t29; final double t31 = t30 + 1.0; final double t32 = sk * t31; final double t45 = fx * t27; final double t33 = t28 + t32 - t45; final double t34 = Y * t33; final double t35 = fx * tx; final double t36 = sk * ty; final double t37 = tz * u0; final double t40 = t15 - t22; final double t41 = sk * t40; final double t42 = t14 * u0; final double t43 = t26 + t41 - t42; final double t44 = X * t43; final double t46 = t34 + t35 + t36 + t37 + t44; final double t47 = t21 * t46; final double t38 = -t47 + u0; final double t48 = 1.0 / (fx * fx * fx); final double t49 = t38 * t38; final double t50 = t48 * t49 * 2.0; final double t51 = 1.0 / (fx * fx); final double t52 = X * t25; final double t57 = Y * t27; final double t53 = t52 - t57 + tx; final double t54 = t21 * t38 * t51 * t53 * 2.0; final double t55 = t50 + t54; final double t60 = fy * ty; final double t61 = fy * t40; final double t62 = t14 * v0; final double t63 = t61 - t62; final double t64 = X * t63; final double t65 = tz * v0; final double t66 = t17 * v0; final double t67 = fy * t31; final double t68 = t66 + t67; final double t69 = Y * t68; final double t70 = t60 + t64 + t65 + t69; final double t71 = t21 * t70; final double t56 = -t71 + v0; final double t58 = t49 * t51; final double t59 = 1.0 / (fy * fy); final double t72 = t56 * t56; final double t73 = t59 * t72; final double t74 = t58 + t73; final double t75 = t74 * t74; final double t76 = 1.0 / (fy * fy * fy); final double t77 = t72 * t76 * 2.0; final double t78 = X * t40; final double t79 = Y * t31; final double t80 = t78 + t79 + ty; final double t81 = t21 * t56 * t59 * t80 * 2.0; final double t82 = t77 + t81; final double t83 = k1 * t74; final double t84 = k2 * t75; final double t85 = k3 * t74 * t75; final double t86 = t83 + t84 + t85; final double t87 = 1.0 / pow(t5, 3.0 / 2.0); final double t88 = 1.0 / (t5 * t5); final double t89 = t7 * t87 * wx * wy; final double t90 = t2 * t7 * t87 * wz; final double t91 = t2 * t10 * t88 * wz * 2.0; final double t102 = t10 * t11 * wz; final double t103 = t9 * t11 * wx * wy; final double t92 = t89 + t90 + t91 - t102 - t103; final double t93 = t7 * t8; final double t94 = t2 * t9 * t11; final double t95 = t10 * t88 * wx * wy * wz * 2.0; final double t96 = t7 * t87 * wx * wy * wz; final double t109 = t2 * t7 * t87; final double t97 = t93 + t94 + t95 + t96 - t109; final double t98 = t9 * t11 * wx * wz; final double t99 = t2 * t7 * t87 * wy; final double t100 = t2 * t10 * t88 * wy * 2.0; final double t107 = t10 * t11 * wy; final double t108 = t7 * t87 * wx * wz; final double t101 = t98 + t99 + t100 - t107 - t108; final double t104 = t10 * t29 * t88 * wx * 2.0; final double t105 = t7 * t29 * t87 * wx; final double t114 = t10 * t11 * wx * 2.0; final double t106 = t104 + t105 - t114; final double t110 = X * t92; final double t111 = Y * t97; final double t112 = t110 + t111; final double t113 = 1.0 / (t20 * t20); final double t115 = fy * t106; final double t142 = t97 * v0; final double t116 = t115 - t142; final double t117 = Y * t116; final double t118 = fy * t101; final double t119 = t92 * v0; final double t120 = t118 + t119; final double t143 = X * t120; final double t121 = t117 - t143; final double t122 = t21 * t121; final double t123 = t70 * t112 * t113; final double t124 = t122 + t123; final double t125 = t10 * t23 * t88 * wx * 2.0; final double t126 = t7 * t23 * t87 * wx; final double t127 = t125 + t126; final double t128 = sk * t101; final double t129 = t92 * u0; final double t145 = fx * t127; final double t130 = t128 + t129 - t145; final double t131 = X * t130; final double t132 = -t98 + t99 + t100 - t107 + t108; final double t133 = fx * t132; final double t134 = t97 * u0; final double t146 = sk * t106; final double t135 = t133 + t134 - t146; final double t136 = Y * t135; final double t137 = t131 + t136; final double t138 = t21 * t137; final double t147 = t46 * t112 * t113; final double t139 = t138 - t147; final double t140 = t38 * t51 * t139 * 2.0; final double t144 = t56 * t59 * t124 * 2.0; final double t141 = t140 - t144; final double t148 = t7 * t87 * wy * wz; final double t149 = t3 * t7 * t87 * wx; final double t150 = t3 * t10 * t88 * wx * 2.0; final double t151 = t10 * t29 * t88 * wy * 2.0; final double t152 = t7 * t29 * t87 * wy; final double t153 = t151 + t152; final double t154 = t9 * t11 * wy * wz; final double t155 = t3 * t7 * t87 * wz; final double t156 = t3 * t10 * t88 * wz * 2.0; final double t157 = -t89 - t102 + t103 + t155 + t156; final double t158 = t157 * u0; final double t159 = t10 * t23 * t88 * wy * 2.0; final double t160 = t7 * t23 * t87 * wy; final double t174 = t10 * t11 * wy * 2.0; final double t161 = t159 + t160 - t174; final double t170 = t10 * t11 * wx; final double t162 = -t148 + t149 + t150 + t154 - t170; final double t163 = sk * t162; final double t164 = t3 * t7 * t87; final double t169 = t3 * t9 * t11; final double t165 = -t93 + t95 + t96 + t164 - t169; final double t166 = t165 * u0; final double t175 = fx * t161; final double t167 = t163 + t166 - t175; final double t168 = X * t167; final double t171 = Y * t157; final double t172 = X * t165; final double t173 = t171 + t172; final double t176 = t148 + t149 + t150 - t154 - t170; final double t177 = fx * t176; final double t183 = sk * t153; final double t178 = t158 + t177 - t183; final double t179 = Y * t178; final double t180 = t168 + t179; final double t181 = t21 * t180; final double t184 = t46 * t113 * t173; final double t182 = t181 - t184; final double t185 = fy * t162; final double t186 = t165 * v0; final double t187 = t185 + t186; final double t188 = X * t187; final double t189 = fy * t153; final double t196 = t157 * v0; final double t190 = t189 - t196; final double t197 = Y * t190; final double t191 = t188 - t197; final double t192 = t21 * t191; final double t198 = t70 * t113 * t173; final double t193 = t192 - t198; final double t194 = t56 * t59 * t193 * 2.0; final double t195 = t38 * t51 * t182 * 2.0; final double t199 = t194 + t195; final double t200 = t4 * t9 * t11; final double t201 = t4 * t7 * t87 * wx; final double t202 = t4 * t10 * t88 * wx * 2.0; final double t203 = t148 - t154 - t170 + t201 + t202; final double t204 = t4 * t7 * t87 * wy; final double t205 = t4 * t10 * t88 * wy * 2.0; final double t206 = t98 - t107 - t108 + t204 + t205; final double t207 = t4 * t7 * t87; final double t208 = t10 * t29 * t88 * wz * 2.0; final double t209 = t7 * t29 * t87 * wz; final double t214 = t10 * t11 * wz * 2.0; final double t210 = t208 + t209 - t214; final double t211 = X * t203; final double t212 = Y * t206; final double t213 = t211 + t212; final double t215 = t10 * t23 * t88 * wz * 2.0; final double t216 = t7 * t23 * t87 * wz; final double t217 = t203 * u0; final double t218 = t93 + t95 + t96 + t200 - t207; final double t219 = t206 * u0; final double t220 = -t93 + t95 + t96 - t200 + t207; final double t221 = fx * t220; final double t238 = sk * t210; final double t222 = t219 + t221 - t238; final double t223 = Y * t222; final double t224 = t203 * v0; final double t225 = fy * t218; final double t226 = t224 + t225; final double t227 = X * t226; final double t228 = fy * t210; final double t244 = t206 * v0; final double t229 = t228 - t244; final double t245 = Y * t229; final double t230 = t227 - t245; final double t231 = t21 * t230; final double t246 = t70 * t113 * t213; final double t232 = t231 - t246; final double t233 = t56 * t59 * t232 * 2.0; final double t234 = -t214 + t215 + t216; final double t235 = sk * t218; final double t247 = fx * t234; final double t236 = t217 + t235 - t247; final double t237 = X * t236; final double t239 = t223 + t237; final double t240 = t21 * t239; final double t248 = t46 * t113 * t213; final double t241 = t240 - t248; final double t242 = t38 * t51 * t241 * 2.0; final double t243 = t233 + t242; final double t249 = 1.0 / fx; final double t250 = 1.0 / fy; final double t251 = t21 * t56 * t250 * 2.0; final double t252 = sk * t21 * t38 * t51 * 2.0; final double t253 = t251 + t252; final double t254 = t21 * u0; final double t255 = t70 * t113; final double t260 = t21 * v0; final double t256 = t255 - t260; final double t262 = t46 * t113; final double t257 = t254 - t262; final double t258 = t38 * t51 * t257 * 2.0; final double t261 = t56 * t59 * t256 * 2.0; final double t259 = t258 - t261; final double t263 = k1 * t55; final double t264 = k2 * t55 * t74 * 2.0; final double t265 = k3 * t55 * t75 * 3.0; final double t266 = t263 + t264 + t265; final double t267 = k1 * t82; final double t268 = k3 * t75 * t82 * 3.0; final double t269 = k2 * t74 * t82 * 2.0; final double t270 = t267 + t268 + t269; final double t271 = t21 * t80; final double t272 = t21 * t80 * t86; final double t273 = k1 * t21 * t38 * t51 * t80 * 2.0; final double t274 = k2 * t21 * t38 * t51 * t74 * t80 * 4.0; final double t275 = k3 * t21 * t38 * t51 * t75 * t80 * 6.0; final double t276 = t273 + t274 + t275; final double t277 = t38 * t56 * 2.0; final double t278 = k1 * t141; final double t279 = k2 * t74 * t141 * 2.0; final double t280 = k3 * t75 * t141 * 3.0; final double t281 = k1 * t199; final double t282 = k2 * t74 * t199 * 2.0; final double t283 = k3 * t75 * t199 * 3.0; final double t284 = t281 + t282 + t283; final double t285 = k1 * t243; final double t286 = k2 * t74 * t243 * 2.0; final double t287 = k3 * t75 * t243 * 3.0; final double t288 = t285 + t286 + t287; final double t289 = k1 * t21 * t38 * t249 * 2.0; final double t290 = k2 * t21 * t38 * t74 * t249 * 4.0; final double t291 = k3 * t21 * t38 * t75 * t249 * 6.0; final double t292 = t289 + t290 + t291; final double t293 = k1 * t253; final double t294 = k3 * t75 * t253 * 3.0; final double t295 = k2 * t74 * t253 * 2.0; final double t296 = t293 + t294 + t295; final double t297 = k1 * t259; final double t298 = k2 * t74 * t259 * 2.0; final double t299 = k3 * t75 * t259 * 3.0; final double t300 = t297 + t298 + t299; A0[0][0] = t21 * t53 + t266 * (u0 - t21 * (t34 + t35 + t36 + t37 + X * (t26 - t14 * u0 + sk * (t15 - t10 * t11 * wx * wy)))) - p2 * (t50 + t54 + t21 * t38 * t53 * 4.0) + t21 * t53 * t86 - p1 * t21 * t53 * t56 * 2.0; A0[0][1] = -p2 * t82 + t38 * t270 - p1 * t21 * t38 * t80 * 2.0; A0[0][2] = 1.0; A0[0][4] = t271 + t272 - p2 * (t21 * t38 * t80 * 4.0 + t21 * t38 * t51 * t80 * 2.0) + t38 * t276 - p1 * t21 * t56 * t80 * 2.0; A0[0][5] = -t38 * t74; A0[0][6] = -t38 * t75; A0[0][7] = -t38 * t74 * t75; A0[0][8] = t277; A0[0][9] = t49 * 2.0 + t58 + t73; A0[0][10] = t138 - t147 + t86 * t139 + t38 * (t278 + t279 + t280) - p2 * (t140 - t144 + t38 * t139 * 4.0) + p1 * t38 * t124 * 2.0 - p1 * t56 * t139 * 2.0; A0[0][11] = -t184 + t86 * t182 + t38 * t284 - p2 * (t194 + t195 + t38 * t182 * 4.0) + t21 * (t168 + Y * (t158 - sk * t153 + fx * (t148 + t149 + t150 - t10 * t11 * wx - t9 * t11 * wy * wz))) - p1 * t38 * t193 * 2.0 - p1 * t56 * t182 * 2.0; A0[0][12] = t240 - t248 + t38 * t288 - p2 * (t233 + t242 + t38 * t241 * 4.0) + t86 * (t21 * (t223 + X * (t217 + sk * (t93 + t95 + t96 + t200 - t4 * t7 * t87) - fx * (t215 + t216 - t10 * t11 * wz * 2.0))) - t46 * t113 * t213) - p1 * t38 * t232 * 2.0 - p1 * t56 * t241 * 2.0; A0[0][13] = fx * t21 + t38 * t292 - p2 * (fx * t21 * t38 * 4.0 + t21 * t38 * t249 * 2.0) + fx * t21 * t86 - fx * p1 * t21 * t56 * 2.0; A0[0][14] = sk * t21 + t38 * t296 - p2 * (t251 + t252 + sk * t21 * t38 * 4.0) + sk * t21 * t86 - fy * p1 * t21 * t38 * 2.0 - p1 * sk * t21 * t56 * 2.0; A0[0][15] = t254 - t46 * t113 + t38 * t300 + t86 * t257 - p2 * (t258 - t261 + t38 * t257 * 4.0) - p1 * t56 * t257 * 2.0 + p1 * t38 * (t255 - t260) * 2.0; A0[1][0] = -p1 * t55 + t56 * t266 - p2 * t21 * t53 * t56 * 2.0; A0[1][1] = t271 + t272 + t56 * t270 - p1 * (t77 + t81 + t21 * t56 * t80 * 4.0) - p2 * t21 * t38 * t80 * 2.0; A0[1][3] = 1.0; A0[1][4] = t56 * t276 - p2 * t21 * t56 * t80 * 2.0 - p1 * t21 * t38 * t51 * t80 * 2.0; A0[1][5] = -t56 * t74; A0[1][6] = -t56 * t75; A0[1][7] = -t56 * t74 * t75; A0[1][8] = t58 + t72 * 2.0 + t73; A0[1][9] = t277; A0[1][10] = -t122 - t123 - t86 * t124 + t56 * (t278 + t279 + t280) + p1 * (-t140 + t144 + t56 * t124 * 4.0) + p2 * t38 * t124 * 2.0 - p2 * t56 * t139 * 2.0; A0[1][11] = t192 - t198 + t86 * t193 + t56 * t284 - p1 * (t194 + t195 + t56 * t193 * 4.0) - p2 * t38 * t193 * 2.0 - p2 * t56 * t182 * 2.0; A0[1][12] = t231 - t246 + t86 * t232 + t56 * t288 - p1 * (t233 + t242 + t56 * t232 * 4.0) - p2 * t38 * t232 * 2.0 - p2 * t56 * t241 * 2.0; A0[1][13] = t56 * t292 - fx * p2 * t21 * t56 * 2.0 - p1 * t21 * t38 * t249 * 2.0; A0[1][14] = fy * t21 + t56 * t296 - p1 * (t251 + t252 + fy * t21 * t56 * 4.0) + fy * t21 * t86 - fy * p2 * t21 * t38 * 2.0 - p2 * sk * t21 * t56 * 2.0; A0[1][15] = -t255 + t260 - t86 * t256 + t56 * t300 + p1 * (-t258 + t261 + t56 * t256 * 4.0) - p2 * t56 * t257 * 2.0 + p2 * t38 * (t255 - t260) * 2.0; // end matlab code final double[][] result = new double[2][10 + 6 * points.size()]; System.arraycopy(A0[0], 0, result[0], 0, 10); System.arraycopy(A0[1], 0, result[1], 0, 10); System.arraycopy(A0[0], 10, result[0], 10 + img * 6, 6); System.arraycopy(A0[1], 10, result[1], 10 + img * 6, 6); // result[0][7] = 0; // result[1][7] = 0; // result[0][8] = 0; // result[1][8] = 0; // result[0][9] = 0; // result[1][9] = 0; return result; } } /** * Stack the observed image locations of the calibration pattern points into * a vector * * @return the observed vector */ @Override protected RealVector buildObservedVector() { int totalPoints = 0; for (int i = 0; i < points.size(); i++) totalPoints += points.get(i).size(); final double[] vec = new double[totalPoints * 2]; for (int i = 0, k = 0; i < points.size(); i++) { for (int j = 0; j < points.get(i).size(); j++, k++) { vec[k * 2 + 0] = points.get(i).get(j).secondObject().getX(); vec[k * 2 + 1] = points.get(i).get(j).secondObject().getY(); } } return new ArrayRealVector(vec, false); } /** * Perform Levenburg-Marquardt non-linear optimisation to get better * estimates of the parameters */ private void refine() { final LevenbergMarquardtOptimizer lm = new LevenbergMarquardtOptimizer(); final RealVector start = buildInitialVector(); final RealVector observed = buildObservedVector(); final int maxEvaluations = 1000; final int maxIterations = 1000; final MultivariateVectorFunction value = new Value(); final MultivariateMatrixFunction jacobian = new Jacobian(); final MultivariateJacobianFunction model = LeastSquaresFactory.model(value, jacobian); final Optimum result = lm.optimize(LeastSquaresFactory.create(model, observed, start, null, maxEvaluations, maxIterations)); updateEstimates(result.getPoint()); } /** * Extract the data from the optimised parameter vector and put it back into * our camera model * * @param point * the optimised parameter vector */ private void updateEstimates(RealVector point) { final CameraIntrinsics intrinsic = cameras.get(0).intrinsicParameters; intrinsic.setFocalLengthX(point.getEntry(0)); intrinsic.setFocalLengthY(point.getEntry(1)); intrinsic.setPrincipalPointX(point.getEntry(2)); intrinsic.setPrincipalPointY(point.getEntry(3)); intrinsic.setSkewFactor(point.getEntry(4)); intrinsic.k1 = point.getEntry(5); intrinsic.k2 = point.getEntry(6); intrinsic.k3 = point.getEntry(7); intrinsic.p1 = point.getEntry(8); intrinsic.p2 = point.getEntry(9); for (int i = 0; i < cameras.size(); i++) { final Camera e = cameras.get(i); final double[] rv = new double[] { point.getEntry(i * 6 + 10), point.getEntry(i * 6 + 11), point.getEntry(i * 6 + 12) }; e.rotation = TransformUtilities.rodrigues(rv); e.translation.setX(point.getEntry(i * 6 + 13)); e.translation.setY(point.getEntry(i * 6 + 14)); e.translation.setZ(point.getEntry(i * 6 + 15)); } } private RealVector buildInitialVector() { final CameraIntrinsics intrinsic = cameras.get(0).intrinsicParameters; final double[] vector = new double[10 + cameras.size() * 6]; vector[0] = intrinsic.getFocalLengthX(); vector[1] = intrinsic.getFocalLengthY(); vector[2] = intrinsic.getPrincipalPointX(); vector[3] = intrinsic.getPrincipalPointY(); vector[4] = intrinsic.getSkewFactor(); vector[5] = intrinsic.k1; vector[6] = intrinsic.k2; vector[7] = intrinsic.k3; vector[8] = intrinsic.p1; vector[9] = intrinsic.p2; for (int i = 0; i < cameras.size(); i++) { final Camera e = cameras.get(i); final double[] rv = TransformUtilities.rodrigues(e.rotation); vector[i * 6 + 10] = rv[0]; vector[i * 6 + 11] = rv[1]; vector[i * 6 + 12] = rv[2]; vector[i * 6 + 13] = e.translation.getX(); vector[i * 6 + 14] = e.translation.getY(); vector[i * 6 + 15] = e.translation.getZ(); } return new ArrayRealVector(vector, false); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy