
org.openimaj.ml.clustering.assignment.soft.HierarchicalBytePathAssigner Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of clustering Show documentation
Show all versions of clustering Show documentation
Various clustering algorithm implementations for all primitive types including random, random forest, K-Means (Exact, Hierarchical and Approximate), ...
/*
AUTOMATICALLY GENERATED BY jTemp FROM
/Users/jon/Work/openimaj/tags/openimaj-1.3.1/machine-learning/clustering/src/main/jtemp/org/openimaj/ml/clustering/assignment/soft/Hierarchical#T#PathAssigner.jtemp
*/
/**
* Copyright (c) 2011, The University of Southampton and the individual contributors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of the University of Southampton nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.openimaj.ml.clustering.assignment.soft;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
import org.openimaj.ml.clustering.assignment.HardAssigner;
import org.openimaj.ml.clustering.assignment.SoftAssigner;
import org.openimaj.ml.clustering.assignment.hard.ExactByteAssigner;
import org.openimaj.ml.clustering.CentroidsProvider;
import org.openimaj.ml.clustering.kmeans.HierarchicalByteKMeansResult;
import org.openimaj.ml.clustering.kmeans.HierarchicalByteKMeansResult.Node;
import org.openimaj.util.pair.IndependentPair;
import org.openimaj.util.pair.IntFloatPair;
/**
* A {@link SoftAssigner} for gathering the clusters assigned
* to a point from a hierarchical clustering. The returned clusters
* represent the path down the tree to the final closest leaf node.
*
* @author Jonathon Hare ([email protected])
*/
public class HierarchicalBytePathAssigner implements SoftAssigner {
protected HierarchicalByteKMeansResult result;
protected Map, HardAssigner> assigners;
/**
* Construct with the given {@link HierarchicalByteKMeansResult} instance.
* @param result the {@link HierarchicalByteKMeansResult} instance.
*/
public HierarchicalBytePathAssigner(HierarchicalByteKMeansResult result) {
this.result = result;
assigners = new HashMap, HardAssigner>();
}
@Override
public int[][] assign(byte[][] data) {
int[][] assignments = new int[data.length][result.getDepth()];
for (int i = 0; i < data.length; i++) {
Node node = result.getRoot();
int d = 0;
while (node != null) {
HardAssigner assigner = assigners.get(node.result);
if (assigner == null) {
assigner = new ExactByteAssigner(node.result);
assigners.put(node.result, assigner);
}
int best = assigner.assign(data[i]);
assignments[i][d] = best;
++d;
if (node.children == null)
break;
node = node.children[best];
}
}
return assignments;
}
@Override
public int[] assign(byte[] data) {
return assign(new byte[][] {data})[0];
}
@Override
public void assignWeighted(byte[][] data, int[][] assignments, float[][] weights) {
int depth = result.getDepth();
for (int i = 0; i < data.length; i++) {
Node node = result.getRoot();
if (assignments[i].length != depth)
assignments[i] = new int[depth];
Arrays.fill(assignments, -1);
if (weights[i].length != depth)
weights[i] = new float[depth];
int d = 0;
while (node != null) {
HardAssigner assigner = assigners.get(node.result);
if (assigner == null) {
assigner = new ExactByteAssigner(node.result);
assigners.put(node.result, assigner);
}
IntFloatPair best = assigner.assignDistance(data[i]);
assignments[i][d] = best.first;
weights[i][d] = best.second;
++d;
if (node.children == null)
break;
node = node.children[best.first];
}
}
}
@Override
public IndependentPair assignWeighted(byte[] data) {
int[][] assignments = new int[1][];
float[][] weights = new float[1][];
assignWeighted(new byte[][] { data }, assignments, weights);
return new IndependentPair(assignments[0], weights[0]);
}
@Override
public int numDimensions() {
return result.numDimensions();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy