All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.openimaj.ml.clustering.assignment.hard.HierarchicalByteHardAssigner Maven / Gradle / Ivy

Go to download

Various clustering algorithm implementations for all primitive types including random, random forest, K-Means (Exact, Hierarchical and Approximate), ...

There is a newer version: 1.3.10
Show newest version
/*
	AUTOMATICALLY GENERATED BY jTemp FROM
	/Users/jsh2/Work/openimaj/target/checkout/machine-learning/clustering/src/main/jtemp/org/openimaj/ml/clustering/assignment/hard/Hierarchical#T#HardAssigner.jtemp
*/
/**
 * Copyright (c) 2011, The University of Southampton and the individual contributors.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 *   * 	Redistributions of source code must retain the above copyright notice,
 * 	this list of conditions and the following disclaimer.
 *
 *   *	Redistributions in binary form must reproduce the above copyright notice,
 * 	this list of conditions and the following disclaimer in the documentation
 * 	and/or other materials provided with the distribution.
 *
 *   *	Neither the name of the University of Southampton nor the names of its
 * 	contributors may be used to endorse or promote products derived from this
 * 	software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
package org.openimaj.ml.clustering.assignment.hard;

import org.openimaj.ml.clustering.assignment.HardAssigner;
import org.openimaj.ml.clustering.assignment.soft.HierarchicalBytePathAssigner;
import org.openimaj.ml.clustering.kmeans.HierarchicalByteKMeansResult;
import org.openimaj.util.pair.IndependentPair;
import org.openimaj.util.pair.IntFloatPair;

/**
 * The {@link HierarchicalByteHardAssigner} is a {@link HardAssigner} for
 * {@link HierarchicalByteKMeansResult} instances. The assigner
 * produces the index of the assigned leaf node as if the clusters were
 * actually flat. 
 * 
 * @author Jonathon Hare ([email protected])
 */
public class HierarchicalByteHardAssigner implements HardAssigner {
	/**
	 * The {@link ScoringScheme} determines how the distance
	 * to a cluster is estimated from the hierarchy of k-means
	 * generated clusters.
	 * 
	 * @author Jonathon Hare ([email protected])
	 */
	public enum ScoringScheme {
		/**
		 * Sum distances down the tree.
		 * 
		 * @author Jonathon Hare ([email protected])
		 */
		SUM {
			@Override
			public float computeScore(float[] weights) {
				float sum = 0;
				for (float w : weights) {
					if (w < 0) break;
					sum += w;
				}
				
				return sum;
			}
		},
		/**
		 * Product of distances down the tree.
		 * 
		 * @author Jonathon Hare ([email protected])
		 */
		PRODUCT {
			@Override
			public float computeScore(float[] weights) {
				float prod = 1;
				for (float w : weights) {
					if (w < 0) break;
					prod *= w;
				}
				
				return prod;
			}
		},
		/**
		 * The distance in the root cluster 
		 * 
		 * @author Jonathon Hare ([email protected])
		 */
		FIRST {
			@Override
			public float computeScore(float[] weights) {
				return weights[0];
			}
		},
		/**
		 * The distance in the leaf cluster
		 * 
		 * @author Jonathon Hare ([email protected])
		 */
		LAST {
			@Override
			public float computeScore(float[] weights) {
				float last = -1;
				
				for (float w : weights) {
					if (w < 0) break;
					last = w;
				}
				
				return last;
			}
		},
		/**
		 * The mean distance down the tree
		 * 
		 * @author Jonathon Hare ([email protected])
		 */
		MEAN {
			@Override
			public float computeScore(float[] weights) {
				float sum = 0;
				int count = 0;
				
				for (float w : weights) {
					if (w < 0) break;
					sum += w;
					count++;
				}
				
				return sum / (float)count;
			}
		}
		;
		
		protected abstract float computeScore(float[] weights); 
	}
	
	protected HierarchicalByteKMeansResult result;
	protected HierarchicalBytePathAssigner path;
	protected ScoringScheme scorer;
	
	/**
	 * Construct with the given hierarchical KMeans clusterer
	 * and scoring scheme.
	 *
	 * @param result the hierarchical KMeans clusterer
	 * @param scorer the scoring scheme
	 */
	public HierarchicalByteHardAssigner(HierarchicalByteKMeansResult result, ScoringScheme scorer) {
		this.result = result;
		this.scorer = scorer;
		this.path = new HierarchicalBytePathAssigner(result);
	}

	/**
	 * Construct with the given Hierarchical KMeans clusterer
	 * and the SUM scoring scheme.
	 *
	 * @param result the hierarchical KMeans clusterer
	 */
	public HierarchicalByteHardAssigner(HierarchicalByteKMeansResult result) {
		this(result, ScoringScheme.SUM);
	}
	
	@Override
	public int[] assign(byte[][] data) {
		int [] asgn = new int[data.length];

		for (int i=0; i pw = path.assignWeighted(data);
		
		int index = result.getIndex(pw.firstObject());
		float score = scorer.computeScore(pw.secondObject());
		
		return new IntFloatPair(index, score);
	}
	
	@Override
	public int size() {
	    return result.countLeafs();
	}
	
	@Override
	public int numDimensions() {
	    return result.numDimensions();
	}
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy