org.openimaj.ml.clustering.assignment.hard.KDTreeIntEuclideanAssigner Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of clustering Show documentation
Show all versions of clustering Show documentation
Various clustering algorithm implementations for all primitive types including random, random forest, K-Means (Exact, Hierarchical and Approximate), ...
/*
AUTOMATICALLY GENERATED BY jTemp FROM
/Users/jsh2/Work/openimaj/target/checkout/machine-learning/clustering/src/main/jtemp/org/openimaj/ml/clustering/assignment/hard/KDTree#T#EuclideanAssigner.jtemp
*/
/**
* Copyright (c) 2011, The University of Southampton and the individual contributors.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* * Neither the name of the University of Southampton nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.openimaj.ml.clustering.assignment.hard;
import org.openimaj.knn.IntNearestNeighbours;
import org.openimaj.knn.IntNearestNeighboursProvider;
import org.openimaj.knn.approximate.IntNearestNeighboursKDTree;
import org.openimaj.ml.clustering.assignment.HardAssigner;
import org.openimaj.ml.clustering.CentroidsProvider;
import org.openimaj.util.pair.IntFloatPair;
/**
* A {@link HardAssigner} that uses a {@link IntNearestNeighboursKDTree} to
* generate approximately correct cluster assignments.
*
* @author Jonathon Hare ([email protected])
*
*/
public class KDTreeIntEuclideanAssigner implements HardAssigner {
protected IntNearestNeighboursKDTree nn;
/**
* Construct the assigner using the given cluster data.
*
* @param provider the cluster data provider
*/
public KDTreeIntEuclideanAssigner(CentroidsProvider provider) {
if (provider instanceof IntNearestNeighboursProvider) {
IntNearestNeighbours internal = ((IntNearestNeighboursProvider)provider).getNearestNeighbours();
if (internal != null && internal instanceof IntNearestNeighboursKDTree) {
nn = (IntNearestNeighboursKDTree) internal;
return;
}
}
nn = new IntNearestNeighboursKDTree(provider.getCentroids(),
IntNearestNeighboursKDTree.DEFAULT_NTREES, IntNearestNeighboursKDTree.DEFAULT_NCHECKS);
}
/**
* Construct the assigner using the given cluster data.
*
* @param data the cluster data
*/
public KDTreeIntEuclideanAssigner(int[][] data) {
nn = new IntNearestNeighboursKDTree(data, IntNearestNeighboursKDTree.DEFAULT_NTREES, IntNearestNeighboursKDTree.DEFAULT_NCHECKS);
}
@Override
public int[] assign(int[][] data) {
int [] argmins = new int [data.length];
float [] mins = new float [data.length];
nn.searchNN(data, argmins, mins);
return argmins;
}
@Override
public int assign(int[] data) {
return assign(new int[][] { data })[0];
}
@Override
public void assignDistance(int[][] data, int[] indices, float[] distances) {
nn.searchNN(data, indices, distances);
}
@Override
public IntFloatPair assignDistance(int[] data) {
int [] index = new int [1];
float [] distance = new float [1];
nn.searchNN(new int[][] { data }, index, distance);
return new IntFloatPair(index[0], distance[0]);
}
@Override
public int size() {
return nn.size();
}
@Override
public int numDimensions() {
return nn.numDimensions();
}
}