All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.openimaj.image.processing.face.feature.EigenFaceFeature Maven / Gradle / Ivy

Go to download

Implementation of a flexible face-recognition pipeline, including pluggable detectors, aligners, feature extractors and recognisers.

There is a newer version: 1.3.10
Show newest version
/**
 * Copyright (c) 2011, The University of Southampton and the individual contributors.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 *   * 	Redistributions of source code must retain the above copyright notice,
 * 	this list of conditions and the following disclaimer.
 *
 *   *	Redistributions in binary form must reproduce the above copyright notice,
 * 	this list of conditions and the following disclaimer in the documentation
 * 	and/or other materials provided with the distribution.
 *
 *   *	Neither the name of the University of Southampton nor the names of its
 * 	contributors may be used to endorse or promote products derived from this
 * 	software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
package org.openimaj.image.processing.face.feature;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.util.AbstractList;
import java.util.List;

import org.openimaj.citation.annotation.Reference;
import org.openimaj.citation.annotation.ReferenceType;
import org.openimaj.data.dataset.Dataset;
import org.openimaj.experiment.dataset.util.DatasetAdaptors;
import org.openimaj.feature.DoubleFV;
import org.openimaj.feature.FeatureVectorProvider;
import org.openimaj.image.FImage;
import org.openimaj.image.model.EigenImages;
import org.openimaj.image.processing.face.alignment.FaceAligner;
import org.openimaj.image.processing.face.detection.DetectedFace;
import org.openimaj.io.IOUtils;
import org.openimaj.ml.training.BatchTrainer;

/**
 * A {@link FacialFeature} for EigenFaces.
 * 
 * @author Jonathon Hare ([email protected])
 */
@Reference(
		type = ReferenceType.Inproceedings,
		author = { "Turk, M.A.", "Pentland, A.P." },
		title = "Face recognition using eigenfaces",
		year = "1991",
		booktitle = "Computer Vision and Pattern Recognition, 1991. Proceedings CVPR '91., IEEE Computer Society Conference on",
		pages = { "586 ", "591" },
		month = "jun",
		number = "",
		volume = "",
		customData = {
				"keywords", "eigenfaces;eigenvectors;face images;face recognition system;face space;feature space;human faces;two-dimensional recognition;unsupervised learning;computerised pattern recognition;eigenvalues and eigenfunctions;",
				"doi", "10.1109/CVPR.1991.139758"
		})
public class EigenFaceFeature implements FacialFeature, FeatureVectorProvider {
	/**
	 * A {@link FacialFeatureExtractor} for producing EigenFaces. Unlike most
	 * {@link FacialFeatureExtractor}s, this one either needs to be trained or
	 * provided with a pre-trained {@link EigenImages} object.
	 * 

* A {@link FaceAligner} can be used to produce aligned faces for training * and feature extraction. * * @author Jonathon Hare ([email protected]) * * @param * */ public static class Extractor implements FacialFeatureExtractor, BatchTrainer { EigenImages eigen = null; FaceAligner aligner = null; /** * Construct with the requested number of components (the number of PCs * to keep) and a face aligner. The principal components must be learned * by calling {@link #train(List)}. * * @param numComponents * the number of principal components to keep. * @param aligner * the face aligner */ public Extractor(int numComponents, FaceAligner aligner) { this(new EigenImages(numComponents), aligner); } /** * Construct with given pre-trained {@link EigenImages} basis and a face * aligner. * * @param basis * the pre-trained basis * @param aligner * the face aligner */ public Extractor(EigenImages basis, FaceAligner aligner) { this.eigen = basis; this.aligner = aligner; } @Override public EigenFaceFeature extractFeature(T face) { final FImage patch = aligner.align(face); final DoubleFV fv = eigen.extractFeature(patch); return new EigenFaceFeature(fv); } @Override public void readBinary(DataInput in) throws IOException { eigen.readBinary(in); final String alignerClass = in.readUTF(); aligner = IOUtils.newInstance(alignerClass); aligner.readBinary(in); } @Override public byte[] binaryHeader() { return this.getClass().getName().getBytes(); } @Override public void writeBinary(DataOutput out) throws IOException { eigen.writeBinary(out); out.writeUTF(aligner.getClass().getName()); aligner.writeBinary(out); } @Override public void train(final List data) { final List patches = new AbstractList() { @Override public FImage get(int index) { return aligner.align(data.get(index)); } @Override public int size() { return data.size(); } }; eigen.train(patches); } /** * Train from a dataset * * @param data * the dataset */ public void train(final Dataset data) { train(DatasetAdaptors.asList(data)); } @Override public String toString() { return String.format("EigenFaceFeature.Extractor[aligner=%s]", this.aligner); } } private DoubleFV fv; protected EigenFaceFeature() { this(null); } /** * Construct the EigenFaceFeature with the given feature vector. * * @param fv * the feature vector */ public EigenFaceFeature(DoubleFV fv) { this.fv = fv; } @Override public void readBinary(DataInput in) throws IOException { fv = new DoubleFV(); fv.readBinary(in); } @Override public byte[] binaryHeader() { return getClass().getName().getBytes(); } @Override public void writeBinary(DataOutput out) throws IOException { fv.writeBinary(out); } @Override public DoubleFV getFeatureVector() { return fv; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy