All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.openimaj.image.processing.face.feature.FacePatchFeature Maven / Gradle / Ivy

Go to download

Implementation of a flexible face-recognition pipeline, including pluggable detectors, aligners, feature extractors and recognisers.

There is a newer version: 1.3.10
Show newest version
/**
 * Copyright (c) 2011, The University of Southampton and the individual contributors.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 *   * 	Redistributions of source code must retain the above copyright notice,
 * 	this list of conditions and the following disclaimer.
 *
 *   *	Redistributions in binary form must reproduce the above copyright notice,
 * 	this list of conditions and the following disclaimer in the documentation
 * 	and/or other materials provided with the distribution.
 *
 *   *	Neither the name of the University of Southampton nor the names of its
 * 	contributors may be used to endorse or promote products derived from this
 * 	software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
package org.openimaj.image.processing.face.feature;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

import org.openimaj.feature.FeatureVectorProvider;
import org.openimaj.feature.FloatFV;
import org.openimaj.image.FImage;
import org.openimaj.image.pixel.Pixel;
import org.openimaj.image.processing.face.alignment.AffineAligner;
import org.openimaj.image.processing.face.detection.keypoints.FKEFaceDetector;
import org.openimaj.image.processing.face.detection.keypoints.FacialKeypoint;
import org.openimaj.image.processing.face.detection.keypoints.KEDetectedFace;
import org.openimaj.image.processing.face.detection.keypoints.FacialKeypoint.FacialKeypointType;
import org.openimaj.io.ReadWriteableBinary;
import org.openimaj.io.wrappers.ReadableListBinary;
import org.openimaj.io.wrappers.WriteableListBinary;
import org.openimaj.math.geometry.point.Point2d;
import org.openimaj.math.geometry.point.Point2dImpl;

import Jama.Matrix;

/**
 * A {@link FacialFeature} that is built by concatenating
 * each of the normalised facial part patches from a detected
 * face. 
 * 
 * @author Jonathon Hare ([email protected])
 *
 */
public class FacePatchFeature implements FacialFeature, FeatureVectorProvider {
	/**
	 * A {@link FacialFeatureExtractor} for producing {@link FacialFeature}s
	 * 
	 * @author Jonathon Hare ([email protected])
	 *
	 */
	public static class Extractor implements FacialFeatureExtractor {
		/**
		 * Default constructor
		 */
		public Extractor() {}
		
		@Override
		public FacePatchFeature extractFeature(KEDetectedFace face) {
			FacePatchFeature f = new FacePatchFeature();
			f.initialise(face);
			return f;
		}

		@Override
		public void readBinary(DataInput in) throws IOException {
			//Do nothing
		}

		@Override
		public byte[] binaryHeader() {
			//Do nothing
			return null;
		}

		@Override
		public void writeBinary(DataOutput out) throws IOException {
			//Do nothing
		}
	}
	
	/**
	 * A {@link FacialKeypoint} with an associated feature
	 * 
	 * @author Jonathon Hare ([email protected])
	 */
	public static class DetectedFacePart extends FacialKeypoint implements ReadWriteableBinary {
		float [] featureVector;
		int featureRadius;
		
		/**
		 * Default constructor
		 */
		public DetectedFacePart() {
			super();
		}
		
		/**
		 * Construct with the given parameters
		 * @param type the type of keypoint
		 * @param position the position of the keypoint
		 */
		public DetectedFacePart(FacialKeypointType type, Point2d position) {
			super(type, position);
		}
		
		/**
		 * @return the image patch around the keypoint
		 */
		public FImage getImage() {
			FImage image = new FImage(2*featureRadius+1,2*featureRadius+1);
			
			for (int i=0, rr=-featureRadius; rr<=featureRadius; rr++) {
				for (int cc=-featureRadius; cc<=featureRadius; cc++) {
					float r2 = rr*rr + cc*cc;
					
					if (r2<=featureRadius*featureRadius) { //inside circle
						float value = featureVector[i++];
						
						image.pixels[rr + featureRadius][cc + featureRadius] = value < -3 ? 0 : value >=3 ? 1 : (3f + value) / 6f;  
					}
				}
			}
			
			return image;
		}

		@Override
		public void readBinary(DataInput in) throws IOException {
			super.readBinary(in);
			
			int sz = in.readInt();
			if (sz<0) {
				featureVector = null;
			} else {
				featureVector = new float[sz];
				for (int i=0; i faceParts = new ArrayList();

	/**
	 * Default constructor.
	 */
	public FacePatchFeature() {
	}
	
	protected void initialise(KEDetectedFace face) {
		extractFeatures(face);
		this.featureVector = createFeatureVector();
	}

	protected FloatFV createFeatureVector() {
		int length = faceParts.get(0).featureVector.length;
		FloatFV fv = new FloatFV(faceParts.size() * length);
		
		for (int i=0; i transformed = new ArrayList();
		List nontransformed = new ArrayList();
		for (int rr=-radius; rr<=radius; rr++) {
			for (int cc=-radius; cc<=radius; cc++) {
				float r2 = rr*rr + cc*cc;
				if (r2<=radius*radius) { //inside circle
					//Note: do transform without the translation!!!
					float px = (float) (cc*scl* T.get(0, 0) + rr*scl*T.get(0, 1));
					float py = (float) (cc*scl* T.get(1, 0) + rr*scl*T.get(1, 1));
					
					transformed.add(new Point2dImpl(px, py));
					nontransformed.add(new Pixel(cc,rr));
				}
			}
		}
		
		for (int j=0; j(faceParts) {
			@Override
			protected DetectedFacePart readValue(DataInput in) throws IOException {
				DetectedFacePart v = new DetectedFacePart();
				v.readBinary(in);
				return v;
			}
		}.readBinary(in);
	}

	@Override
	public byte[] binaryHeader() {
		return this.getClass().getName().getBytes();
	}

	@Override
	public void writeBinary(DataOutput out) throws IOException {
		featureVector.writeBinary(out);
		out.writeInt(radius);
		out.writeFloat(scl);
		
		new WriteableListBinary(faceParts) {
			@Override
			protected void writeValue(DetectedFacePart v, DataOutput out) throws IOException {
				v.writeBinary(out);
			}
		}.writeBinary(out);
	}
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy